Some rigidity results for minimal graphs over unbounded domains

Alberto Farina

Université de Picardie J. Verne LAMFA, CNRS UMR 7352 Amiens, France

Sobolev inequalities in the Alps

Institut Fourier, Grenoble 29-30 June 2023

イロト イヨト イヨト --

3

Around 1762, G.L. Lagrange consider the following problem :

Find the graph of a smooth function u = u(x, y), over a two-dimensional bounded and smooth domain Ω , having least area among all graphs that assume given values at the boundary of Ω .

Lagrange showed that, *if such a graph exists*, then *u* is a solution of

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = 0 \quad in \quad \Omega \tag{1}$$

• the graph of u is called minimal graph,

• the above equation is named Minimal Surface Equation (MSE),

• (most likely) this was the beginning of the Calculus of Variations :

$$\mathcal{A}(u) := \int_{\Omega} \sqrt{1 + |\nabla u|^2}.$$
(2)

Around 1762, G.L. Lagrange consider the following problem :

Find the graph of a smooth function u = u(x, y), over a two-dimensional bounded and smooth domain Ω , having least area among all graphs that assume given values at the boundary of Ω .

Lagrange showed that, if such a graph exists, then u is a solution of

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = 0 \quad in \quad \Omega \tag{1}$$

• the graph of *u* is called *minimal graph*,

• the above equation is named Minimal Surface Equation (MSE),

• (most likely) this was the beginning of the Calculus of Variations :

$$\mathcal{A}(u) := \int_{\Omega} \sqrt{1 + |\nabla u|^2}.$$
(2)

Around 1762, G.L. Lagrange consider the following problem :

Find the graph of a smooth function u = u(x, y), over a two-dimensional bounded and smooth domain Ω , having least area among all graphs that assume given values at the boundary of Ω .

Lagrange showed that, if such a graph exists, then u is a solution of

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = 0 \quad in \quad \Omega \tag{1}$$

• the graph of *u* is called *minimal graph*,

• the above equation is named Minimal Surface Equation (MSE),

 (most likely) this was the beginning of the Calculus of Variations : (MSE) is the Euler-Lagrange equation associated with the area functional

$$\mathcal{A}(u) := \int_{\Omega} \sqrt{1 + |\nabla u|^2}. \tag{2}$$

Around 1762, G.L. Lagrange consider the following problem :

Find the graph of a smooth function u = u(x, y), over a two-dimensional bounded and smooth domain Ω , having least area among all graphs that assume given values at the boundary of Ω .

Lagrange showed that, if such a graph exists, then u is a solution of

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = 0 \quad in \quad \Omega \tag{1}$$

• the graph of *u* is called *minimal graph*,

• the above equation is named Minimal Surface Equation (MSE),

• (most likely) this was the beginning of the Calculus of Variations : (MSE) is the Euler-Lagrange equation associated with the area functional

$$\mathcal{A}(u) := \int_{\Omega} \sqrt{1 + |\nabla u|^2}. \tag{2}$$

The Minimal Surface Equation (MSE)

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right)=0\qquad\text{in}\quad\Omega\subseteq\mathbb{R}^N,$$

- the l.h.s. of (MSE) is equal to NH(x),
- H(x) is the *the mean curvature* of the graph of u at the point $(x, u(x)) \in \mathbb{R}^{N+1}$.
- This fact was first observed, for N = 2, by J.B. Meusnier in 1776.
- A *minimal graph* provides a simple and natural example of "minimal submanifold" of dimension *N*.

< ロ > < 同 > < 回 > < 回 > .

The Minimal Surface Equation (MSE)

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right)=0\qquad\text{in}\quad\Omega\subseteq\mathbb{R}^N,$$

- the l.h.s. of (MSE) is equal to NH(x),
- H(x) is the *the mean curvature* of the graph of u at the point $(x, u(x)) \in \mathbb{R}^{N+1}$.
- This fact was first observed, for N = 2, by J.B. Meusnier in 1776.
- A *minimal graph* provides a simple and natural example of "minimal submanifold" of dimension *N*.

э.

Bernstein-type results

Bernstein's Theorem

Bernstein's Theorem

Theorem (S.N. Bernstein, 1915)

Let $u \in C^2(\mathbb{R}^2)$ be a solution of the minimal surface equation (MSE)

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = 0 \quad on \quad \mathbb{R}^2$$
(3)

イロト イボト イヨト イヨト

Bernstein's Theorem The Bernstein property (BP) Failure of Bernstein property (Moser's Theorem

*

Bernstein's Theorem

Theorem (S.N. Bernstein, 1915)

Let $u \in C^2(\mathbb{R}^2)$ be a solution of the minimal surface equation (MSE)

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = 0 \quad on \quad \mathbb{R}^2$$
(3)

イロト イポト イヨト イヨト

Then u is an affine function, i.e.,

$$u(x,y) = \alpha x + \beta y + \gamma,$$

for some real constant α, β, γ .

The proof is based on a Liouville-type theorem for elliptic (*not uniformly elliptic*) operator, which holds true only in dimension 2.

2

Moser's Theorem The theorem of Bombieri and Giu A sharp Bernstein-type result

Bernstein's Theorem

Bernstein's Theorem

Theorem (S.N. Bernstein, 1915)

Let $u \in C^2(\mathbb{R}^2)$ be a solution of the minimal surface equation (MSE)

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = 0 \quad on \quad \mathbb{R}^2$$
(3)

イロト イポト イヨト イヨト

э

Then u is an affine function, i.e.,

$$u(x,y) = \alpha x + \beta y + \gamma,$$

for some real constant α, β, γ .

The proof is based on a Liouville-type theorem for elliptic (*not uniformly elliptic*) operator, which holds true only in dimension 2.

Bernstein's Theorem The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

イロト 不得 トイヨト イヨト 二日

Theorem (S.N. Bernstein, 1915 - E. Hopf, 1950)

Let a, b, $c:\mathbb{R}^2\to\mathbb{R}$ be functions such that the symmetric matrix :

$$egin{pmatrix} \mathsf{a}(x,y) & \mathsf{b}(x,y) \ \mathsf{b}(x,y) & \mathsf{c}(x,y) \end{pmatrix}$$
 is positive definite for every $(x,y) \in \mathbb{R}^2.$

Let $u \in C^2(\mathbb{R}^2, \mathbb{R})$ be a solution of :

$$\begin{cases} a(x,y)\frac{\partial^2 u}{\partial x^2}(x,y) + 2b(x,y)\frac{\partial^2 u}{\partial x \partial y}(x,y) + c(x,y)\frac{\partial^2 u}{\partial y^2}(x,y) = 0 & \text{ in } \mathbb{R}^2, \\ u(x,y) = o(\sqrt{x^2 + y^2}) & \text{ as } \sqrt{x^2 + y^2} \to +\infty. \end{cases}$$
(4)

Then u is a constant function.

Bernstein's Theorem The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giust A sharm Bernstein-type result

Proof of Bernstein's Theorem in \mathbb{R}^2

A direct calculation shows that the smooth functions

$$v_1 = \arctan\left(\frac{\partial u}{\partial x}\right), \quad v_2 = \arctan\left(\frac{\partial u}{\partial y}\right)$$

are *bounded solutions*, on \mathbb{R}^2 , of the equation :

$$\left(1 + \left(\frac{\partial u}{\partial y}\right)^2\right)\frac{\partial^2 v}{\partial x^2} - 2\frac{\partial u}{\partial x}\frac{\partial u}{\partial y}\frac{\partial^2 v}{\partial x\partial y} + \left(1 + \left(\frac{\partial u}{\partial x}\right)^2\right)\frac{\partial^2 v}{\partial y^2} = 0.$$

$$\begin{pmatrix} \left(1 + \left(\frac{\partial u}{\partial y}\right)^2\right) & -\frac{\partial u}{\partial x}\frac{\partial u}{\partial y} \\ -\frac{\partial u}{\partial x}\frac{\partial u}{\partial y} & \left(1 + \left(\frac{\partial u}{\partial x}\right)^2\right) \end{pmatrix}$$

$$\lambda_{1} = 1, \quad \lambda_{2} = 1 + |\nabla u|^{2}$$

$$\downarrow$$

$$v_{1}, v_{2} \text{ are constant } \Longrightarrow \nabla u = \text{const.}$$

$$\downarrow$$

$$u \text{ is an affine function.}$$

Bernstein's Theorem The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

Proof of Bernstein's Theorem in \mathbb{R}^2

A direct calculation shows that the smooth functions

$$v_1 = \arctan\left(\frac{\partial u}{\partial x}\right), \quad v_2 = \arctan\left(\frac{\partial u}{\partial y}\right)$$

are bounded solutions, on \mathbb{R}^2 , of the equation :

$$\left(1+\left(\frac{\partial u}{\partial y}\right)^2\right)\frac{\partial^2 v}{\partial x^2}-2\frac{\partial u}{\partial x}\frac{\partial u}{\partial y}\frac{\partial^2 v}{\partial x\partial y}+\left(1+\left(\frac{\partial u}{\partial x}\right)^2\right)\frac{\partial^2 v}{\partial y^2}=0.$$

$$\begin{pmatrix} \left(1 + \left(\frac{\partial u}{\partial y}\right)^2\right) & -\frac{\partial u}{\partial x}\frac{\partial u}{\partial y} \\ -\frac{\partial u}{\partial x}\frac{\partial u}{\partial y} & \left(1 + \left(\frac{\partial u}{\partial x}\right)^2\right) \end{pmatrix}$$

Bernstein's Theorem The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

Proof of Bernstein's Theorem in \mathbb{R}^2

A direct calculation shows that the smooth functions

$$v_1 = \arctan\left(\frac{\partial u}{\partial x}\right), \quad v_2 = \arctan\left(\frac{\partial u}{\partial y}\right)$$

are bounded solutions, on \mathbb{R}^2 , of the equation :

$$\left(1+\left(\frac{\partial u}{\partial y}\right)^2\right)\frac{\partial^2 v}{\partial x^2}-2\frac{\partial u}{\partial x}\frac{\partial u}{\partial y}\frac{\partial^2 v}{\partial x\partial y}+\left(1+\left(\frac{\partial u}{\partial x}\right)^2\right)\frac{\partial^2 v}{\partial y^2}=0.$$

$$\begin{pmatrix} \left(1 + \left(\frac{\partial u}{\partial y}\right)^2\right) & -\frac{\partial u}{\partial x}\frac{\partial u}{\partial y} \\ -\frac{\partial u}{\partial x}\frac{\partial u}{\partial y} & \left(1 + \left(\frac{\partial u}{\partial x}\right)^2\right) \end{pmatrix}$$

Bernstein-type results

Bernstein's Theorem

Proof of Bernstein's Theorem in \mathbb{R}^2

A direct calculation shows that the smooth functions

$$v_1 = \arctan\left(\frac{\partial u}{\partial x}\right), \quad v_2 = \arctan\left(\frac{\partial u}{\partial y}\right)$$

are *bounded solutions*, on \mathbb{R}^2 , of the equation :

$$\left(1+\left(\frac{\partial u}{\partial y}\right)^2\right)\frac{\partial^2 v}{\partial x^2}-2\frac{\partial u}{\partial x}\frac{\partial u}{\partial y}\frac{\partial^2 v}{\partial x\partial y}+\left(1+\left(\frac{\partial u}{\partial x}\right)^2\right)\frac{\partial^2 v}{\partial y^2}=0.$$

An application of the previous Theorem with the matrix

$$\begin{pmatrix} \left(1 + \left(\frac{\partial u}{\partial y}\right)^2\right) & -\frac{\partial u}{\partial x}\frac{\partial u}{\partial y} \\ -\frac{\partial u}{\partial x}\frac{\partial u}{\partial y} & \left(1 + \left(\frac{\partial u}{\partial x}\right)^2\right) \end{pmatrix}$$

Image: A matrix

Bernstein's Theorem The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

Proof of Bernstein's Theorem in \mathbb{R}^2

A direct calculation shows that the smooth functions

$$v_1 = \arctan\left(\frac{\partial u}{\partial x}\right), \quad v_2 = \arctan\left(\frac{\partial u}{\partial y}\right)$$

are bounded solutions, on \mathbb{R}^2 , of the equation :

$$\left(1+\left(\frac{\partial u}{\partial y}\right)^2\right)\frac{\partial^2 v}{\partial x^2}-2\frac{\partial u}{\partial x}\frac{\partial u}{\partial y}\frac{\partial^2 v}{\partial x\partial y}+\left(1+\left(\frac{\partial u}{\partial x}\right)^2\right)\frac{\partial^2 v}{\partial y^2}=0.$$

$$\begin{pmatrix} \left(1 + \left(\frac{\partial u}{\partial y}\right)^2\right) & -\frac{\partial u}{\partial x}\frac{\partial u}{\partial y} \\ -\frac{\partial u}{\partial x}\frac{\partial u}{\partial y} & \left(1 + \left(\frac{\partial u}{\partial x}\right)^2\right) \end{pmatrix}$$

Bernstein's Theorem The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

Proof of Bernstein's Theorem in \mathbb{R}^2

A direct calculation shows that the smooth functions

$$v_1 = \arctan\left(\frac{\partial u}{\partial x}\right), \quad v_2 = \arctan\left(\frac{\partial u}{\partial y}\right)$$

are bounded solutions, on \mathbb{R}^2 , of the equation :

$$\left(1+\left(\frac{\partial u}{\partial y}\right)^2\right)\frac{\partial^2 v}{\partial x^2}-2\frac{\partial u}{\partial x}\frac{\partial u}{\partial y}\frac{\partial^2 v}{\partial x\partial y}+\left(1+\left(\frac{\partial u}{\partial x}\right)^2\right)\frac{\partial^2 v}{\partial y^2}=0.$$

An application of the previous Theorem with the matrix

$$\begin{pmatrix} \left(1 + \left(\frac{\partial u}{\partial y}\right)^2\right) & -\frac{\partial u}{\partial x}\frac{\partial u}{\partial y} \\ -\frac{\partial u}{\partial x}\frac{\partial u}{\partial y} & \left(1 + \left(\frac{\partial u}{\partial x}\right)^2\right) \end{pmatrix}$$

Image: A matrix

4 3 4 3 4 3 4

3

Bernstein-type results

Bernstein's Theorem

Proof of Bernstein's Theorem in \mathbb{R}^2

A direct calculation shows that the smooth functions

$$v_1 = \arctan\left(\frac{\partial u}{\partial x}\right), \quad v_2 = \arctan\left(\frac{\partial u}{\partial y}\right)$$

are *bounded solutions*, on \mathbb{R}^2 , of the equation :

$$\left(1+\left(\frac{\partial u}{\partial y}\right)^2\right)\frac{\partial^2 v}{\partial x^2}-2\frac{\partial u}{\partial x}\frac{\partial u}{\partial y}\frac{\partial^2 v}{\partial x\partial y}+\left(1+\left(\frac{\partial u}{\partial x}\right)^2\right)\frac{\partial^2 v}{\partial y^2}=0.$$

An application of the previous Theorem with the matrix

$$\begin{pmatrix} \left(1 + \left(\frac{\partial u}{\partial y}\right)^2\right) & -\frac{\partial u}{\partial x}\frac{\partial u}{\partial y} \\ -\frac{\partial u}{\partial x}\frac{\partial u}{\partial y} & \left(1 + \left(\frac{\partial u}{\partial x}\right)^2\right) \end{pmatrix}$$

Image: A matrix

Bernstein's Theorem The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

・ロト ・厚ト ・ヨト

The Bernstein property (BP)

The natural problem of whether the only solutions of the minimal surface equation on \mathbb{R}^N , $N \ge 3$, are first degree polynomials became known as *Bernstein's problem (or Bernstein property)*.

This problem resisted for a half-century and was solved thanks to the combined efforts of some giants of mathematics of the XX century.

The Bernstein property (BP) is true in :

• $\mathbb{R}^3,\;$ E. De Giorgi (1965)

- ℝ⁴, F.J. Almgren (1966)
- \mathbb{R}^N , for $N \leq 7$, J. Simons (1968)

Bernstein's Theorem The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

ヘロア 人間 アメヨア メヨア

The Bernstein property (BP)

The natural problem of whether the only solutions of the minimal surface equation on \mathbb{R}^N , $N \ge 3$, are first degree polynomials became known as *Bernstein's problem (or Bernstein property)*.

This problem resisted for a half-century and was solved thanks to the combined efforts of some giants of mathematics of the XX century.

The Bernstein property (BP) is true in :

• $\mathbb{R}^3,\; E.\; De\; Giorgi\; (1965)$

• \mathbb{R}^4 , F.J. Almgren (1966)

• \mathbb{R}^N , for $N \leq 7$, J. Simons (1968)

Bernstein's Theorem The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

・ロト ・回ト ・ヨト ・ヨト

э

The Bernstein property (BP)

The natural problem of whether the only solutions of the minimal surface equation on \mathbb{R}^N , $N \ge 3$, are first degree polynomials became known as *Bernstein's problem (or Bernstein property)*.

This problem resisted for a half-century and was solved thanks to the combined efforts of some giants of mathematics of the XX century.

The Bernstein property (BP) is true in :

- ℝ³, *E. De Giorgi (1965)*
- $\mathbb{R}^4,\;$ F.J. Almgren (1966)
- \mathbb{R}^N , for $N \leq 7$, J. Simons (1968)

Bernstein's Theorem The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

イロト イポト イヨト イヨト

The Bernstein property (BP)

The natural problem of whether the only solutions of the minimal surface equation on \mathbb{R}^N , $N \ge 3$, are first degree polynomials became known as *Bernstein's problem (or Bernstein property)*.

This problem resisted for a half-century and was solved thanks to the combined efforts of some giants of mathematics of the XX century.

The Bernstein property (BP) is true in :

- ℝ³, *E. De Giorgi (1965)*
- \mathbb{R}^4 , F.J. Almgren (1966)

• \mathbb{R}^N , for $N \leq 7$, J. Simons (1968)

Bernstein's Theorem The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

・ロン ・厚 と ・ ヨ と ・ ヨ と …

The Bernstein property (BP)

The natural problem of whether the only solutions of the minimal surface equation on \mathbb{R}^N , $N \ge 3$, are first degree polynomials became known as *Bernstein's problem (or Bernstein property)*.

This problem resisted for a half-century and was solved thanks to the combined efforts of some giants of mathematics of the XX century.

The Bernstein property (BP) is true in :

- ℝ³, *E. De Giorgi (1965)*
- \mathbb{R}^4 , F.J. Almgren (1966)
- \mathbb{R}^N , for $N \leq 7$, J. Simons (1968)

Bernstein's Theorem The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The Bernstein property (BP)

The natural problem of whether the only solutions of the minimal surface equation on \mathbb{R}^N , $N \ge 3$, are first degree polynomials became known as *Bernstein's problem (or Bernstein property)*.

This problem resisted for a half-century and was solved thanks to the combined efforts of some giants of mathematics of the XX century.

The Bernstein property (BP) is true in :

- ℝ³, *E. De Giorgi (1965)*
- ℝ⁴, F.J. Almgren (1966)
- \mathbb{R}^N , for $N \leq 7$, J. Simons (1968)

Bernstein's Theorem The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

・ 同 ト ・ ヨ ト ・ ヨ ト

Failure of Bernstein property (BP)

The Bernstein property fails in \mathbb{R}^N , for any $N \ge 8$.

In 1969, E. Bombieri, E. De Giorgi and E. Giusti, settled Bernstein's problem proving the *existence of a non-affine solution* of the minimal surface equation (MSE) in \mathbb{R}^N , for any $N \ge 8$.

Their (amazing) proof relies on the existence of a minimal, and area-minimizing cone (*Simons' cone*)

$$\mathcal{C}_{4,4} := \{ (x,y) \in \mathbb{R}^4 \times \mathbb{R}^4 \quad : \quad |x|^2 < |y|^2 \}$$

Bernstein s Theorem The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

・ロト ・御 ト ・ ヨ ト ・ ヨ ト

Failure of Bernstein property (BP)

The Bernstein property fails in \mathbb{R}^N , for any $N \ge 8$.

In 1969, E. Bombieri, E. De Giorgi and E. Giusti, settled Bernstein's problem proving the *existence of a non-affine solution* of the minimal surface equation (MSE) in \mathbb{R}^N , for any $N \ge 8$.

Their (amazing) proof relies on the existence of a minimal, and area-minimizing cone (*Simons' cone*)

 $C_{4,4} := \{ (x,y) \in \mathbb{R}^4 \times \mathbb{R}^4 \quad : \quad |x|^2 < |y|^2 \}$

Bernstein s Theorem The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

< ロ > < 同 > < 三 > < 三 >

Failure of Bernstein property (BP)

The Bernstein property fails in \mathbb{R}^N , for any $N \ge 8$.

In 1969, E. Bombieri, E. De Giorgi and E. Giusti, settled Bernstein's problem proving the *existence of a non-affine solution* of the minimal surface equation (MSE) in \mathbb{R}^N , for any $N \ge 8$.

Their (amazing) proof relies on the existence of a minimal, and area-minimizing cone (*Simons' cone*)

$$\mathcal{C}_{4,4} := \{ (x,y) \in \mathbb{R}^4 \times \mathbb{R}^4 \quad : \quad |x|^2 < |y|^2 \}$$

The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

Moser's Theorem

Theorem (J. Moser, 1961)

Let
$$N \ge 2$$
 and $u \in C^2(\mathbb{R}^N)$ be a solution of :

$$\begin{cases} -\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = 0 \quad on \quad \mathbb{R}^N, \\ \nabla u \in L^{\infty}(\mathbb{R}^N). \end{cases}$$
(5)

イロン 不通 と 不良 とう ほうし

Then u is an affine function.

The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

Proof of Moser's Theorem

• Since *u* is smooth, by differentiating the (MSE) we get

$$-\operatorname{div}(A(x)\nabla u_j) = 0 \quad \text{on} \quad \mathbb{R}^N$$
(6)

where u_j denotes the partial derivative $\frac{\partial u}{\partial x_j}$, for any j = 1, ..., N, and $A = (a_{hk})$ is the real symmetric matrix whose entries are given by :

$$a_{hk} = a_{hk}(x) := \frac{\delta_{hk}}{(1+|\nabla u|^2)^{\frac{1}{2}}} - \frac{u_h u_k}{(1+|\nabla u|^2)^{\frac{3}{2}}}.$$
 (7)

•
$$\lambda_{\min}(A) = \frac{1}{(1+|\nabla u|^2)^{\frac{3}{2}}}$$
 and $\lambda_{\max}(A) = \frac{1}{(1+|\nabla u|^2)^{\frac{1}{2}}}$.

- $\nabla u \in L^{\infty}(\mathbb{R}^N) \Longrightarrow$ equation (6) is uniformly elliptic on \mathbb{R}^N .
- The classic Liouville-type theorem $\implies u_i = const. \implies u$ affine.

The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

Proof of Moser's Theorem

• Since *u* is smooth, by differentiating the (MSE) we get

$$-\operatorname{div}(A(x)\nabla u_j) = 0 \quad \text{on} \quad \mathbb{R}^N$$
(6)

where u_j denotes the partial derivative $\frac{\partial u}{\partial x_j}$, for any j = 1, ..., N, and $A = (a_{hk})$ is the real symmetric matrix whose entries are given by :

$$a_{hk} = a_{hk}(x) := \frac{\delta_{hk}}{(1 + |\nabla u|^2)^{\frac{1}{2}}} - \frac{u_h u_k}{(1 + |\nabla u|^2)^{\frac{3}{2}}}.$$
 (7)

• $\lambda_{\min}(A) = \frac{1}{(1+|\nabla u|^2)^{\frac{3}{2}}}$ and $\lambda_{\max}(A) = \frac{1}{(1+|\nabla u|^2)^{\frac{1}{2}}}$

- $\nabla u \in L^{\infty}(\mathbb{R}^N) \Longrightarrow$ equation (6) is uniformly elliptic on \mathbb{R}^N .
- The classic Liouville-type theorem $\implies u_i = const. \implies u$ affine.

The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

Proof of Moser's Theorem

• Since *u* is smooth, by differentiating the (MSE) we get

$$-\operatorname{div}(A(x)\nabla u_j) = 0 \quad \text{on} \quad \mathbb{R}^N$$
(6)

イロト イポト イヨト イヨト

where u_j denotes the partial derivative $\frac{\partial u}{\partial x_j}$, for any j = 1, ..., N, and $A = (a_{hk})$ is the real symmetric matrix whose entries are given by :

$$a_{hk} = a_{hk}(x) := \frac{\delta_{hk}}{(1+|\nabla u|^2)^{\frac{1}{2}}} - \frac{u_h u_k}{(1+|\nabla u|^2)^{\frac{3}{2}}}.$$
(7)

• $\lambda_{min}(A) = \frac{1}{(1+|\nabla u|^2)^{\frac{3}{2}}}$ and $\lambda_{max}(A) = \frac{1}{(1+|\nabla u|^2)^{\frac{1}{2}}}.$

• $\nabla u \in L^{\infty}(\mathbb{R}^N) \Longrightarrow$ equation (6) is uniformly elliptic on \mathbb{R}^N .

• The classic Liouville-type theorem $\implies u_j = const. \implies u$ affine.

The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

Proof of Moser's Theorem

1

• Since *u* is smooth, by differentiating the (MSE) we get

$$-\operatorname{div}(A(x)\nabla u_j) = 0 \quad \text{on} \quad \mathbb{R}^N$$
(6)

イロト イポト イヨト イヨト

where u_j denotes the partial derivative $\frac{\partial u}{\partial x_j}$, for any j = 1, ..., N, and $A = (a_{hk})$ is the real symmetric matrix whose entries are given by :

$$a_{hk} = a_{hk}(x) := \frac{\delta_{hk}}{(1+|\nabla u|^2)^{\frac{1}{2}}} - \frac{u_h u_k}{(1+|\nabla u|^2)^{\frac{3}{2}}}.$$
(7)
$$\lambda_{min}(A) = \frac{1}{(1+|\nabla u|^2)^{\frac{3}{2}}} \quad \text{and} \quad \lambda_{max}(A) = \frac{1}{(1+|\nabla u|^2)^{\frac{1}{2}}}.$$

- ∇u ∈ L[∞](ℝ^N) ⇒ equation (6) is uniformly elliptic on ℝ^N.
- The classic Liouville-type theorem $\implies u_i = const. \implies u$ affine.

The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

Proof of Moser's Theorem

0

• Since *u* is smooth, by differentiating the (MSE) we get

$$-\operatorname{div}(A(x)\nabla u_j) = 0 \quad \text{on} \quad \mathbb{R}^N$$
(6)

< ロ > < 同 > < 三 > < 三 >

where u_j denotes the partial derivative $\frac{\partial u}{\partial x_j}$, for any j = 1, ..., N, and $A = (a_{hk})$ is the real symmetric matrix whose entries are given by :

$$a_{hk} = a_{hk}(x) := \frac{\delta_{hk}}{(1 + |\nabla u|^2)^{\frac{1}{2}}} - \frac{u_h u_k}{(1 + |\nabla u|^2)^{\frac{3}{2}}}.$$
(7)
$$\lambda_{min}(A) = \frac{1}{(1 + |\nabla u|^2)^{\frac{3}{2}}} \quad \text{and} \quad \lambda_{max}(A) = \frac{1}{(1 + |\nabla u|^2)^{\frac{1}{2}}}.$$

- ∇u ∈ L[∞](ℝ^N) ⇒ equation (6) is uniformly elliptic on ℝ^N.
- The classic Liouville-type theorem $\implies u_j = const. \implies u$ affine.

Bernstein's Theorem The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

イロト イポト イヨト イヨト

э

The theorem of Bombieri and Giusti

Theorem (E. Bombieri, E. Giusti, 1972)

Let $N \ge 2$ and $u \in C^2(\mathbb{R}^N)$ be a solution of

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right)=0 \quad on \quad \mathbb{R}^N,$$

such that N-1 partial derivatives of u are bounded on \mathbb{R}^N . Then u is an affine function.

Bernstein's Theorem The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

イロト イボト イヨト イヨト

To prove their result, E. Bombieri and E. Giusti, demonstrate

- a new Harnack inequality for uniformly elliptic equations on minimal surfaces (oriented boundary of least area).
- if N − 1 partial derivatives of u are bounded on ℝ^N, then u has bounded gradient on ℝ^N.
- Moser's Theorem \implies the Bernstein property.

イロト イポト イヨト イヨト

3

To prove their result, E. Bombieri and E. Giusti, demonstrate

- a new Harnack inequality for uniformly elliptic equations on minimal surfaces (oriented boundary of least area).
- if N − 1 partial derivatives of u are bounded on ℝ^N, then u has bounded gradient on ℝ^N.
- Moser's Theorem \implies the Bernstein property.
Bernstein's Theorem The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

イロト イポト イヨト イヨト

3

To prove their result, E. Bombieri and E. Giusti, demonstrate

- a new Harnack inequality for uniformly elliptic equations on minimal surfaces (oriented boundary of least area).
- if N-1 partial derivatives of u are bounded on \mathbb{R}^N , then u has bounded gradient on \mathbb{R}^N .
- Moser's Theorem => the Bernstein property.

イロト イポト イヨト イヨト

3

To prove their result, E. Bombieri and E. Giusti, demonstrate

- a new Harnack inequality for uniformly elliptic equations on minimal surfaces (oriented boundary of least area).
- if N-1 partial derivatives of u are bounded on \mathbb{R}^N , then u has bounded gradient on \mathbb{R}^N .
- Moser's Theorem \implies the Bernstein property.

The Minimal Surface Equation (MSE) Bernstein-type results Mains results Bernstein's Theorem The Bernstein property (BP) Failure of Bernstein property (BP) Moser's Theorem The theorem of Bombieri and Giusti A sharp Bernstein-type result

э

A sharp Bernstein-type result

Theorem (A.F., 2018)

Let $N \geq 8$ and $u \in C^2(\mathbb{R}^N)$ be a solution of

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right)=0 \quad on \quad \mathbb{R}^N,$$

such that

N-7 partial derivatives of u are bounded <u>on one side</u> (not necessarily the same).

Then u is an affine function.

The theorem is sharp. Its proof is completely different from the one of Bombieri and Giusti.

A rigidity result on half-spaces

Theorem (A.F., 2022)

Assume $N \ge 2$ and let Σ be an open affine half-space of \mathbb{R}^N . If $u \in C^2(\overline{\Sigma})$ is a solution of

$$\begin{cases} -\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = 0 & \text{in} \quad \Sigma, \\ u > 0 & \text{in} \quad \Sigma, \\ u = 0 & \text{in} \quad \partial \Sigma \end{cases}$$

then u is an affine function.

The proof is based on the following new rigidity result for entire minimal graphs.

イロト イヨト イヨト --

3

Rigidity on the entire space I

Theorem (A.F., 2022)

Assume $N \ge 2$ and let $v \in C^2(\mathbb{R}^N)$ be a solution of the minimal surface equation

$$-\operatorname{div}\left(rac{
abla v}{\sqrt{1+|
abla v|^2}}
ight)=0$$
 on \mathbb{R}^N

If for some $a, b \in \mathbb{R}$ the set $\{x \in \mathbb{R}^N : v(x) > a|x| + b\}$ is contained in an open affine half-space of \mathbb{R}^N , then u is an affine function.

The same conclusion remains true if the above assumption is replaced by: for some $a', b' \in \mathbb{R}$ the set $\{x \in \mathbb{R}^N : v(x) < a'|x| + b'\}$ is contained in an open affine half-space of \mathbb{R}^N .

イロト イヨト イヨト

э

Rigidity on the entire space I

Theorem (A.F., 2022)

Assume $N \ge 2$ and let $v \in C^2(\mathbb{R}^N)$ be a solution of the minimal surface equation

$$-\operatorname{div}\left(rac{
abla v}{\sqrt{1+|
abla v|^2}}
ight)=0 \qquad \textit{on} \quad \mathbb{R}^N$$

If for some $a, b \in \mathbb{R}$ the set $\{x \in \mathbb{R}^N : v(x) > a|x| + b\}$ is contained in an open affine half-space of \mathbb{R}^N , then u is an affine function.

The same conclusion remains true if the above assumption is replaced by: for some $a', b' \in \mathbb{R}$ the set $\{x \in \mathbb{R}^N : v(x) < a'|x| + b'\}$ is contained in an open affine half-space of \mathbb{R}^N .

- 4 回 ト 4 ヨ ト

Proof of the main result on half-spaces

- W.l.o.g we may and do suppose that $\Sigma = \{x \in \mathbb{R}^N : x_N > 0\}$
- Let $v : \mathbb{R}^N \to \mathbb{R}$ be the odd extension of u with respect to $\partial \Sigma$
- Thanks to the homogeneous Dirichlet boundary condition satisfied by *u*, it is easily seen that *v* is an *entire minimal graph* such that

$$\{x \in \mathbb{R}^N : v(x) > 0\} = \{x \in \mathbb{R}^N : x_N > 0\}$$

• Theorem 1 with $a = b = 0 \implies v$ is affine.

< ロ > < 同 > < 三 > < 三 >

Proof of the main result on half-spaces

- W.I.o.g we may and do suppose that $\Sigma = \{x \in \mathbb{R}^N : x_N > 0\}$
- Let $v : \mathbb{R}^N \to \mathbb{R}$ be the odd extension of u with respect to $\partial \Sigma$
- Thanks to the homogeneous Dirichlet boundary condition satisfied by *u*, it is easily seen that *v* is an *entire minimal graph* such that

$${x \in \mathbb{R}^N : v(x) > 0} = {x \in \mathbb{R}^N : x_N > 0}$$

• Theorem 1 with $a = b = 0 \implies v$ is affine.

< ロ > < 同 > < 三 > < 三 >

Proof of the main result on half-spaces

- W.I.o.g we may and do suppose that $\Sigma = \{x \in \mathbb{R}^N : x_N > 0\}$
- Let $v : \mathbb{R}^N \to \mathbb{R}$ be the odd extension of u with respect to $\partial \Sigma$
- Thanks to the homogeneous Dirichlet boundary condition satisfied by *u*, it is easily seen that *v* is an *entire minimal graph* such that

$$\{x \in \mathbb{R}^N : v(x) > 0\} = \{x \in \mathbb{R}^N : x_N > 0\}$$

• Theorem 1 with $a = b = 0 \Longrightarrow v$ is affine.

イロト イポト イヨト イヨト

Proof of the main result on half-spaces

- W.I.o.g we may and do suppose that $\Sigma = \{x \in \mathbb{R}^N : x_N > 0\}$
- Let $v : \mathbb{R}^N \to \mathbb{R}$ be the odd extension of u with respect to $\partial \Sigma$
- Thanks to the homogeneous Dirichlet boundary condition satisfied by *u*, it is easily seen that *v* is an *entire minimal graph* such that

$${x \in \mathbb{R}^N : v(x) > 0} = {x \in \mathbb{R}^N : x_N > 0}$$

• Theorem 1 with $a = b = 0 \Longrightarrow v$ is affine.

A rigidity result on the entire space II

Another interesting consequence of Theorem 1 is the following

Theorem II (A.F., 2022)

Assume $N \ge 2$ and let $v \in C^2(\mathbb{R}^N)$ be a solution of the minimal surface equation

$$-\operatorname{div}\left(rac{
abla \mathbf{v}}{\sqrt{1+|
abla \mathbf{v}|^2}}
ight)=0$$
 on \mathbb{R}^N

If for some $a, b \in \mathbb{R}$ the set $\{x \in \mathbb{R}^N : v(x) > a|x| + b\}$ contains an open affine half-space of \mathbb{R}^N , then u is an affine function.

The same conclusion remains true if the above assumption is replaced by: for some $a', b' \in \mathbb{R}$ the set $\{x \in \mathbb{R}^N : v(x) < a'|x| + b'\}$ contains an open affine half-space of \mathbb{R}^N .

A rigidity result on the entire space II

Another interesting consequence of Theorem 1 is the following

Theorem II (A.F., 2022)

Assume $N \ge 2$ and let $v \in C^2(\mathbb{R}^N)$ be a solution of the minimal surface equation

$$-\operatorname{div}\left(\frac{\nabla v}{\sqrt{1+|\nabla v|^2}}\right) = 0 \quad on \quad \mathbb{R}^N$$

If for some $a, b \in \mathbb{R}$ the set $\{x \in \mathbb{R}^N : v(x) > a|x| + b\}$ contains an open affine half-space of \mathbb{R}^N , then u is an affine function.

The same conclusion remains true if the above assumption is replaced by:

for some $a', b' \in \mathbb{R}$ the set $\{x \in \mathbb{R}^N : v(x) < a'|x| + b'\}$ contains an open affine half-space of \mathbb{R}^N .

< ロ > < 同 > < 三 > < 三 >

Rigidity on the entire space II : proof

By assumption, the set $\{x \in \mathbb{R}^N : v(x) > a|x| + b\}$ contains an open affine half-space Σ .

Therefore, the set $\{x \in \mathbb{R}^N : v(x) < a|x| + b\}$ is contained in the open affine half-space $\Sigma' := \mathbb{R}^N \setminus \overline{\Sigma}$ and so v must be an affine function thanks to Theorem 1.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Rigidity on the entire space II : proof

By assumption, the set $\{x \in \mathbb{R}^N : v(x) > a|x| + b\}$ contains an open affine half-space Σ .

Therefore, the set $\{x \in \mathbb{R}^N : v(x) < a|x| + b\}$ is contained in the open affine half-space $\Sigma' := \mathbb{R}^N \setminus \overline{\Sigma}$ and so v must be an affine function thanks to Theorem 1.

イロト イヨト イヨト --

3

Let us recall the following well-know Liouville-type Theorem for entire minimal graphs :

Theorem (E. Bombieri, E. De Giorgi, M.Miranda, 1969)

Let v be an entire minimal graphs such that

$$v(x) \ge -K(1+|x|) \qquad \forall x \in \mathbb{R}^N,$$

for some $K \ge 0$. Then v is an affine function.

The Minimal Surface Equation (MSE) Bernstein-type results Mains results Rigidity on half-spaces Rigidity on the entire space I Rigidity on the entire space II A Liouville-type theorem

イロト イヨト イヨト --

3

Theorem (A.F., 2022)

Let Σ be an open affine half-space and let v be an entire minimal graphs such that

$$v(x) \ge -K(1+|x|) \qquad \forall x \in \Sigma,$$

for some $K \ge 0$. Then v is an affine function.

< ロ > < 同 > < 三 > < 三 >

Rigidity on the entire space I : sketch of proof

• W.I.o.g we may and do suppose that

 $\{x\in \mathbb{R}^N: v(x)>a|x|+b\}\subset \{x\in \mathbb{R}^N: x_N>0\}=:\Sigma$

- u = v v(0) is again an entire solution to (MSE) with u(0) = 0.
- Let *U* be the subgraph of *u* and let *U_j* be the one of the function *u_j* defined by

$$u_j(x) = rac{u(jx)}{j}, \quad x \in \mathbb{R}^N, \quad j \ge 1.$$

Since u and u_j are solutions of the (MSE) on \mathbb{R}^N , then

 U_i are non-trivial minimal sets of \mathbb{R}^{N+1} with $0 \in \partial U_i$

Also observe that $U_j := \frac{U}{i}$.

< ロ > < 同 > < 三 > < 三 >

Rigidity on the entire space I : sketch of proof

• W.I.o.g we may and do suppose that

$$\{x \in \mathbb{R}^N : v(x) > a|x| + b\} \subset \{x \in \mathbb{R}^N : x_N > 0\} =: \Sigma$$

- u = v v(0) is again an entire solution to (MSE) with u(0) = 0.
- Let U be the subgraph of u and let U_j be the one of the function u_j defined by

$$u_j(x) = \frac{u(jx)}{j}, \quad x \in \mathbb{R}^N, \quad j \ge 1.$$

Since u and u_j are solutions of the (MSE) on \mathbb{R}^N , then

 U_i are non-trivial minimal sets of \mathbb{R}^{N+1} with $0 \in \partial U_i$

Also observe that $U_j := \frac{U}{i}$.

イロト イボト イヨト イヨト

Rigidity on the entire space I : sketch of proof

• W.I.o.g we may and do suppose that

$$\{x\in \mathbb{R}^N: v(x)>a|x|+b\}\subset \{x\in \mathbb{R}^N: x_N>0\}=:\Sigma$$

- u = v v(0) is again an entire solution to (MSE) with u(0) = 0.
- Let *U* be the subgraph of *u* and let *U_j* be the one of the function *u_j* defined by

$$u_j(x) = rac{u(jx)}{j}, \quad x \in \mathbb{R}^N, \quad j \ge 1.$$

Since u and u_j are solutions of the (MSE) on \mathbb{R}^N , then

 U_i are non-trivial minimal sets of \mathbb{R}^{N+1} with $0 \in \partial U_i$

Also observe that $U_j := \frac{U}{i}$.

イロト 不得 トイヨト イヨト 二日

Rigidity on the entire space I : sketch of proof

• W.I.o.g we may and do suppose that

$$\{x\in \mathbb{R}^N: v(x)>a|x|+b\}\subset \{x\in \mathbb{R}^N: x_N>0\}=:\Sigma$$

- u = v v(0) is again an entire solution to (MSE) with u(0) = 0.
- Let *U* be the subgraph of *u* and let *U_j* be the one of the function *u_j* defined by

$$u_j(x) = rac{u(jx)}{j}, \quad x \in \mathbb{R}^N, \quad j \ge 1.$$

Since u and u_j are solutions of the (MSE) on \mathbb{R}^N , then

 U_i are non-trivial minimal sets of \mathbb{R}^{N+1} with $0 \in \partial U_i$

Also observe that $U_j := \frac{U}{j}$.

Rigidity on the entire space I : sketch of proof

By a classical blow down procedure, a subsequence of U_j (still denoted by U_j) converges to a minimal cone C ⊂ ℝ^{N+1}, with vertex at the origin of ℝ^{N+1} and s.t. 0 ∈ ∂C.
 (C is usually called a blow down of U).

Recall that the blow down procedure also implies :

$C \quad half\text{-space} \quad \Longrightarrow \quad U \equiv C$

 Hence, (by results of M. Miranda), C is itself a subgraph of a generalized solution to the minimal surface equation
 h: ℝ^N → [-∞, +∞] and the sets

$$P = \{ x \in \mathbb{R}^N : h(x) = +\infty \}, \quad N = \{ x \in \mathbb{R}^N : h(x) = -\infty \}$$

イロト イヨト イヨト

э

are both minimal cones of \mathbb{R}^N .

Rigidity on the entire space I : sketch of proof

By a classical blow down procedure, a subsequence of U_j (still denoted by U_j) converges to a minimal cone C ⊂ ℝ^{N+1}, with vertex at the origin of ℝ^{N+1} and s.t. 0 ∈ ∂C.
 (C is usually called a blow down of U).

Recall that the blow down procedure also implies :

C half-space
$$\implies$$
 $U\equiv C$

 Hence, (by results of M. Miranda), C is itself a subgraph of a generalized solution to the minimal surface equation
 h : ℝ^N → [-∞, +∞] and the sets

$$P = \{x \in \mathbb{R}^N : h(x) = +\infty \}, \quad N = \{x \in \mathbb{R}^N : h(x) = -\infty \}$$

イロト イポト イヨト イヨト

are both minimal cones of \mathbb{R}^N .

• $P = \emptyset$.

Suppose for contradiction that P is not-empty, then P is a minimal cone in \mathbb{R}^N , with vertex at the origin of \mathbb{R}^N (since C is a minimal cone with vertex at the origin of \mathbb{R}^{N+1}).

• *P* is contained in Σ . Indeed, if $p \in P$, then there exists an integer j > 1 such that $u_j(p) > |v(0)| + |a||p| + |b|$ and so

$$\frac{v(jp)-v(0)}{j} > |v(0)|+|a||p|+|b| \implies v(jp) > a|jp|+b,$$

that is, $jp \in \{x \in \mathbb{R}^N : v(x) > a|x| + b\}$. Therefore, $jp \in \Sigma$ and so also $p \in \Sigma$.

• Since the minimal cone P is contained in the half-space $\Sigma,$ then $P\equiv\Sigma.$ Thus

$$\Sigma \times \mathbb{R} = P \times \mathbb{R} \subset C$$

3

by construction of *C* and definition of *P*. Therefore, $C \equiv \Sigma \times \mathbb{R}$ and so U = C. But $U = C \equiv \Sigma \times \mathbb{R}$ implies that ∂U is a vertical hyperplane, contradicting the fact ∂U is the graph of the function *u*. Thus, *P* is empty.

• $P = \emptyset$.

Suppose for contradiction that P is not-empty, then P is a minimal cone in \mathbb{R}^N , with vertex at the origin of \mathbb{R}^N (since C is a minimal cone with vertex at the origin of \mathbb{R}^{N+1}).

• *P* is contained in Σ . Indeed, if $p \in P$, then there exists an integer j > 1 such that $u_j(p) > |v(0)| + |a||p| + |b|$ and so

 $\frac{v(jp)-v(0)}{j} > |v(0)|+|a||p|+|b| \implies v(jp) > a|jp|+b,$

that is, $jp \in \{x \in \mathbb{R}^N : v(x) > a|x| + b\}$. Therefore, $jp \in \Sigma$ and so also $p \in \Sigma$.

• Since the minimal cone P is contained in the half-space $\Sigma,$ then $P\equiv\Sigma.$ Thus

$$\Sigma \times \mathbb{R} = P \times \mathbb{R} \subset C$$

by construction of *C* and definition of *P*. Therefore, $C \equiv \Sigma \times \mathbb{R}$ and so U = C. But $U = C \equiv \Sigma \times \mathbb{R}$ implies that ∂U is a vertical hyperplane, contradicting the fact ∂U is the graph of the function *u*. Thus, *P* is empty. • $P = \emptyset$.

Suppose for contradiction that P is not-empty, then P is a minimal cone in \mathbb{R}^N , with vertex at the origin of \mathbb{R}^N (since C is a minimal cone with vertex at the origin of \mathbb{R}^{N+1}).

• *P* is contained in Σ . Indeed, if $p \in P$, then there exists an integer j > 1 such that $u_j(p) > |v(0)| + |a||p| + |b|$ and so

$$\frac{v(jp)-v(0)}{j} > |v(0)|+|a||p|+|b| \implies v(jp) > a|jp|+b,$$

that is, $jp \in \{x \in \mathbb{R}^N : v(x) > a|x| + b\}$. Therefore, $jp \in \Sigma$ and so also $p \in \Sigma$.

• Since the minimal cone P is contained in the half-space $\Sigma,$ then $P\equiv\Sigma.$ Thus

$$\Sigma \times \mathbb{R} = P \times \mathbb{R} \subset C$$

by construction of *C* and definition of *P*. Therefore, $C \equiv \Sigma \times \mathbb{R}$ and so U = C. But $U = C \equiv \Sigma \times \mathbb{R}$ implies that ∂U is a vertical hyperplane, contradicting the fact ∂U is the graph of the function *u*. Thus, *P* is empty.

• $P = \emptyset$.

Suppose for contradiction that P is not-empty, then P is a minimal cone in \mathbb{R}^N , with vertex at the origin of \mathbb{R}^N (since C is a minimal cone with vertex at the origin of \mathbb{R}^{N+1}).

• *P* is contained in Σ . Indeed, if $p \in P$, then there exists an integer j > 1 such that $u_j(p) > |v(0)| + |a||p| + |b|$ and so

$$\frac{v(jp)-v(0)}{j} > |v(0)| + |a||p| + |b| \implies v(jp) > a|jp| + b,$$

that is, $jp \in \{x \in \mathbb{R}^N : v(x) > a|x| + b\}$. Therefore, $jp \in \Sigma$ and so also $p \in \Sigma$.

• Since the minimal cone P is contained in the half-space $\Sigma,$ then $P\equiv\Sigma.$ Thus

$$\Sigma \times \mathbb{R} = P \times \mathbb{R} \subset C$$

by construction of C and definition of P.

Therefore, $C \equiv \Sigma \times \mathbb{R}$ and so U = C. But $U = C \equiv \Sigma \times \mathbb{R}$ implies that ∂U is a vertical hyperplane, contradicting the fact ∂U is the graph of the function u. Thus, P is empty.

• $P = \emptyset$.

Suppose for contradiction that P is not-empty, then P is a minimal cone in \mathbb{R}^N , with vertex at the origin of \mathbb{R}^N (since C is a minimal cone with vertex at the origin of \mathbb{R}^{N+1}).

• *P* is contained in Σ . Indeed, if $p \in P$, then there exists an integer j > 1 such that $u_j(p) > |v(0)| + |a||p| + |b|$ and so

$$\frac{v(jp)-v(0)}{j} > |v(0)| + |a||p| + |b| \implies v(jp) > a|jp| + b,$$

that is, $jp \in \{x \in \mathbb{R}^N : v(x) > a|x| + b\}$. Therefore, $jp \in \Sigma$ and so also $p \in \Sigma$.

• Since the minimal cone P is contained in the half-space $\Sigma,$ then $P\equiv\Sigma.$ Thus

$$\Sigma \times \mathbb{R} = P \times \mathbb{R} \subset C$$

by construction of C and definition of P. Therefore, $C = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}$

Therefore, $C \equiv \Sigma \times \mathbb{R}$ and so U = C.

But $U = C \equiv \Sigma \times \mathbb{R}$ implies that ∂U is a vertical hyperplane,

contradicting the fact ∂U is the graph of the function

Thus, P is empty.

• $P = \emptyset$.

Suppose for contradiction that P is not-empty, then P is a minimal cone in \mathbb{R}^N , with vertex at the origin of \mathbb{R}^N (since C is a minimal cone with vertex at the origin of \mathbb{R}^{N+1}).

• *P* is contained in Σ . Indeed, if $p \in P$, then there exists an integer j > 1 such that $u_j(p) > |v(0)| + |a||p| + |b|$ and so

$$\frac{v(jp)-v(0)}{j} > |v(0)|+|a||p|+|b| \implies v(jp) > a|jp|+b,$$

that is, $jp \in \{x \in \mathbb{R}^N : v(x) > a|x| + b\}$. Therefore, $jp \in \Sigma$ and so also $p \in \Sigma$.

• Since the minimal cone P is contained in the half-space Σ , then $P \equiv \Sigma$. Thus

$$\Sigma \times \mathbb{R} = P \times \mathbb{R} \subset C$$

by construction of *C* and definition of *P*. Therefore, $C \equiv \Sigma \times \mathbb{R}$ and so U = C. But $U = C \equiv \Sigma \times \mathbb{R}$ implies that ∂U is a vertical hyperplane, contradicting the fact ∂U is the graph of the function *u*. Thus, *P* is empty.

 P = Ø implies that the family of functions u_j is equibounded from above on compact sets of ℝ^N.

This and the definition of u_j provide the following estimate

$$\sup_{B(0,j)} u \le \mathcal{K}j \tag{8}$$

for some constant $\mathcal{K} > 0$.

• On the other hand, the celebrated gradient estimate of E. Bombieri, E. De Giorgi, M.Miranda, (1969) tells us that

$$\forall x \in \mathbb{R}^N, \ \forall R > 0, \quad |\nabla u(x)| \le C_1 exp \Big[C_2 \Big(\frac{\sup_{B(x,R)} u - u(x)}{R} \Big) \Big]$$
(9)

where C_1, C_2 are constants depending only on the dimension N.

- Combining (8),(9) and letting $j \to +\infty$ we obtain that $|\nabla u| \in L^{\infty}(\mathbb{R}^{N})$.
- Moser's Theorem implies that u is an affine function (and so is v).

 P = Ø implies that the family of functions u_j is equibounded from above on compact sets of ℝ^N.

This and the definition of u_j provide the following estimate

$$\sup_{B(0,j)} u \le \mathcal{K}j \tag{8}$$

イロト 不得 トイヨト イヨト 二日

for some constant $\mathcal{K} > 0$.

• On the other hand, the celebrated gradient estimate of E. Bombieri, E. De Giorgi, M.Miranda, (1969) tells us that

$$\forall x \in \mathbb{R}^{N}, \ \forall R > 0, \quad |\nabla u(x)| \le C_1 exp \Big[C_2 \Big(\frac{\sup_{B(x,R)} u - u(x)}{R} \Big) \Big]$$
(9)

where C_1 , C_2 are constants depending only on the dimension N.

- Combining (8),(9) and letting $j \to +\infty$ we obtain that $|\nabla u| \in L^{\infty}(\mathbb{R}^N)$.
- Moser's Theorem implies that *u* is an affine function (and so is *v*).

 P = Ø implies that the family of functions u_j is equibounded from above on compact sets of ℝ^N.

This and the definition of u_j provide the following estimate

$$\sup_{B(0,j)} u \le \mathcal{K}j \tag{8}$$

イロト 不得 トイヨト イヨト 二日

for some constant $\mathcal{K} > 0$.

• On the other hand, the celebrated gradient estimate of E. Bombieri, E. De Giorgi, M.Miranda, (1969) tells us that

$$\forall x \in \mathbb{R}^{N}, \ \forall R > 0, \quad |\nabla u(x)| \le C_1 exp \Big[C_2 \Big(\frac{\sup_{B(x,R)} u - u(x)}{R} \Big) \Big]$$
(9)

where C_1 , C_2 are constants depending only on the dimension N.

• Combining (8),(9) and letting $j \to +\infty$ we obtain that $|\nabla u| \in L^{\infty}(\mathbb{R}^N)$.

• Moser's Theorem implies that *u* is an affine function (and so is *v*).

 P = Ø implies that the family of functions u_j is equibounded from above on compact sets of ℝ^N.

This and the definition of u_j provide the following estimate

$$\sup_{B(0,j)} u \le \mathcal{K}j \tag{8}$$

for some constant $\mathcal{K} > 0$.

• On the other hand, the celebrated gradient estimate of E. Bombieri, E. De Giorgi, M.Miranda, (1969) tells us that

$$\forall x \in \mathbb{R}^{N}, \ \forall R > 0, \quad |\nabla u(x)| \le C_1 exp \Big[C_2 \Big(\frac{\sup_{B(x,R)} u - u(x)}{R} \Big) \Big]$$
(9)

where C_1 , C_2 are constants depending only on the dimension N.

- Combining (8),(9) and letting $j \to +\infty$ we obtain that $|\nabla u| \in L^{\infty}(\mathbb{R}^N)$.
- Moser's Theorem implies that *u* is an affine function (and so is *v*).

X a Lebesgue mesurable set of \mathbb{R}^N , $N \ge 1$.

The Perimeter of X in an open set $\Omega \subset \mathbb{R}^N$ is the total variation of the distributional gradient of $\mathbf{1}_X$ in Ω , i.e.,

$$Per(X,\Omega) := \sup\left\{\int_X divg \ : \ g \in C^1_c(\Omega,\mathbb{R}^N), \ \|g\|_{\infty} \le 1\right\}$$
(10)

X has locally finite perimeter in Ω if

$$Per(X, A) < +\infty, \quad \forall \text{ open set } A \subset \subset \Omega.$$
(11)

イロト イボト イヨト イヨト

X has locally finite perimeter in Ω if and only if $\mathbf{1}_X \in BV_{loc}(\Omega)$. Notation : $Per(X,\Omega) = \int_{\Omega} |D\mathbf{1}_X|$. If X is smooth set of \mathbb{R}^N , then $Per(X,\Omega) = \mathcal{H}^{N-1}(\partial X \cap \Omega)$.

X a Lebesgue mesurable set of \mathbb{R}^N , $N \ge 1$.

The Perimeter of X in an open set $\Omega \subset \mathbb{R}^N$ is the total variation of the distributional gradient of $\mathbf{1}_X$ in Ω , i.e.,

$$Per(X,\Omega) := \sup\left\{\int_X divg : g \in C_c^1(\Omega,\mathbb{R}^N), \|g\|_{\infty} \le 1\right\}$$
(10)

X has locally finite perimeter in Ω if

$$Per(X, A) < +\infty, \quad \forall \text{ open set } A \subset \subset \Omega.$$
 (11)

イロト イボト イヨト イヨト

X has locally finite perimeter in Ω if and only if $\mathbf{1}_X \in BV_{loc}(\Omega)$. Notation : $Per(X,\Omega) = \int_{\Omega} |D\mathbf{1}_X|$. If X is smooth set of \mathbb{R}^N , then $Per(X,\Omega) = \mathcal{H}^{N-1}(\partial X \cap \Omega)$.

X a Lebesgue mesurable set of \mathbb{R}^N , $N \ge 1$.

The Perimeter of X in an open set $\Omega \subset \mathbb{R}^N$ is the total variation of the distributional gradient of $\mathbf{1}_X$ in Ω , i.e.,

$$Per(X,\Omega) := \sup\left\{\int_X divg : g \in C_c^1(\Omega,\mathbb{R}^N), \|g\|_{\infty} \le 1\right\}$$
(10)

X has locally finite perimeter in Ω if

$$Per(X, A) < +\infty, \quad \forall \text{ open set } A \subset \subset \Omega.$$
 (11)

イロト イボト イヨト イヨト

X has locally finite perimeter in Ω if and only if $\mathbf{1}_X \in BV_{loc}(\Omega)$. Notation : $Per(X, \Omega) = \int_{\Omega} |D\mathbf{1}_X|$. If X is smooth set of \mathbb{R}^N , then $Per(X, \Omega) = \mathcal{H}^{N-1}(\partial X \cap \Omega)$.

X a Lebesgue mesurable set of \mathbb{R}^N , $N \ge 1$.

The Perimeter of X in an open set $\Omega \subset \mathbb{R}^N$ is the total variation of the distributional gradient of $\mathbf{1}_X$ in Ω , i.e.,

$$Per(X,\Omega) := \sup\left\{\int_X divg : g \in C_c^1(\Omega,\mathbb{R}^N), \|g\|_{\infty} \le 1\right\}$$
(10)

X has locally finite perimeter in Ω if

$$Per(X, A) < +\infty, \quad \forall \text{ open set } A \subset \subset \Omega.$$
 (11)

・ロン ・厚 と ・ ヨ と ・ ヨ と …

X has locally finite perimeter in Ω if and only if $\mathbf{1}_X \in BV_{loc}(\Omega)$.

Notation : $Per(X,\Omega) = \int_{\Omega} |D\mathbf{1}_X|.$

If X is smooth set of \mathbb{R}^N , then $Per(X,\Omega) = \mathcal{H}^{N-1}(\partial X \cap \Omega)$.
Perimeter of measurable sets (De Giorgi 1954)

X a Lebesgue mesurable set of \mathbb{R}^N , $N \ge 1$.

The Perimeter of X in an open set $\Omega \subset \mathbb{R}^N$ is the total variation of the distributional gradient of $\mathbf{1}_X$ in Ω , i.e.,

$$Per(X,\Omega) := \sup\left\{\int_X divg : g \in C_c^1(\Omega,\mathbb{R}^N), \|g\|_{\infty} \le 1\right\}$$
(10)

X has locally finite perimeter in Ω if

$$Per(X, A) < +\infty, \quad \forall \text{ open set } A \subset \subset \Omega.$$
 (11)

イロト イポト イヨト イヨト

X has locally finite perimeter in Ω if and only if $\mathbf{1}_X \in BV_{loc}(\Omega)$. Notation : $Per(X,\Omega) = \int_{\Omega} |D\mathbf{1}_X|$. If X is smooth set of \mathbb{R}^N , then $Per(X,\Omega) = \mathcal{H}^{N-1}(\partial X \cap \Omega)$. The Minimal Surface Equation (MSE) Bernstein-type results Mains results

Minimal sets

Minimal sets

 $E \subset \mathbb{R}^N$ is a *(local) minimal set* in Ω if, for every open set $A \subset \subset \Omega$,

$$Per(E, A) < +\infty$$
 (12)

 $Per(E, A) \leq Per(X, A), \quad \forall X \quad with \quad X \Delta E \subset A$ (13)