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The Minimal Surface Equation (MSE)

Around 1762, G.L. Lagrange consider the following problem :

Find the graph of a smooth function u = u(x , y), over a two-dimensional
bounded and smooth domain Ω, having least area among all graphs that
assume given values at the boundary of Ω.

Lagrange showed that, if such a graph exists, then u is a solution of

− div

(
∇u√

1 + |∇u|2

)
= 0 in Ω (1)

the graph of u is called minimal graph,

the above equation is named Minimal Surface Equation (MSE),

(most likely) this was the beginning of the Calculus of Variations :

(MSE) is the Euler-Lagrange equation associated with the area functional

A(u) :=

∫
Ω

√
1 + |∇u|2. (2)
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The Minimal Surface Equation (MSE)

−div

(
∇u√

1 + |∇u|2

)
= 0 in Ω ⊆ RN ,

the l.h.s. of (MSE) is equal to NH(x),

H(x) is the the mean curvature of the graph of u at the point
(x , u(x)) ∈ RN+1.

This fact was first observed, for N = 2, by J.B. Meusnier in 1776.

A minimal graph provides a simple and natural example of ”minimal
submanifold” of dimension N.
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Bernstein’s Theorem
The Bernstein property (BP)
Failure of Bernstein property (BP)
Moser’s Theorem
The theorem of Bombieri and Giusti
A sharp Bernstein-type result

Bernstein’s Theorem

Theorem (S.N. Bernstein, 1915)

Let u ∈ C 2(R2) be a solution of the minimal surface equation (MSE)

− div

(
∇u√

1 + |∇u|2

)
= 0 on R2 (3)

Then u is an affine function, i.e.,

u(x , y) = αx + βy + γ,

for some real constant α, β, γ.

The proof is based on a Liouville-type theorem for elliptic (not uniformly
elliptic) operator, which holds true only in dimension 2.
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Theorem (S.N. Bernstein, 1915 - E. Hopf, 1950)

Let a, b, c : R2 → R be functions such that the symmetric matrix :(
a(x , y) b(x , y)
b(x , y) c(x , y)

)
is positive definite for every (x , y) ∈ R2.

Let u ∈ C 2(R2,R) be a solution of :
a(x , y)∂2u

∂x2 (x , y) + 2b(x , y) ∂2u
∂x∂y (x , y) + c(x , y)∂2u

∂y2 (x , y) = 0 in R2,

u(x , y) = o(
√
x2 + y2) as

√
x2 + y2 → +∞.

(4)
Then u is a constant function.
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Proof of Bernstein’s Theorem in R2

A direct calculation shows that the smooth functions

v1 = arctan
(∂u
∂x

)
, v2 = arctan

(∂u
∂y

)
are bounded solutions, on R2, of the equation :(

1 +
(∂u
∂y

)2)∂2v

∂x2
− 2

∂u

∂x

∂u

∂y

∂2v

∂x∂y
+
(

1 +
(∂u
∂x

)2)∂2v

∂y 2
= 0.

An application of the previous Theorem with the matrix

(1 +
(

∂u
∂y

)2)
− ∂u

∂x
∂u
∂y

− ∂u
∂x

∂u
∂y

(
1 +

(
∂u
∂x

)2)


λ1 = 1, λ2 = 1 + |∇u|2
⇓

v1, v2 are constant =⇒ ∇u = const.
⇓

u is an affine function.
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The Bernstein property (BP)

The natural problem of whether the only solutions of the minimal surface
equation on RN , N ≥ 3, are first degree polynomials became known as
Bernstein’s problem (or Bernstein property) .

This problem resisted for a half-century and was solved thanks to the
combined efforts of some giants of mathematics of the XX century.

The Bernstein property (BP) is true in :

R3, E. De Giorgi (1965)

R4, F.J. Almgren (1966)

RN , for N ≤ 7, J. Simons (1968)

The proofs are based on the deep connection between minimal graphs
defined over RN and minimal (area-minimizing) cones in RN .
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Failure of Bernstein property (BP)

The Bernstein property fails in RN , for any N ≥ 8.

In 1969, E. Bombieri, E. De Giorgi and E. Giusti, settled Bernstein’s
problem proving the existence of a non-affine solution of the minimal
surface equation (MSE) in RN , for any N ≥ 8.

Their (amazing) proof relies on the existence of a minimal, and
area-minimizing cone (Simons’ cone)

C4,4 := {(x , y) ∈ R4 × R4 : |x |2 < |y |2}
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Moser’s Theorem

Theorem (J. Moser, 1961)

Let N ≥ 2 and u ∈ C 2(RN) be a solution of :
−div

(
∇u√

1+|∇u|2

)
= 0 on RN ,

∇u ∈ L∞(RN).

(5)

Then u is an affine function.
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Proof of Moser’s Theorem

Since u is smooth, by differentiating the (MSE) we get

− div(A(x)∇uj) = 0 on RN (6)

where uj denotes the partial derivative ∂u
∂xj

, for any j = 1, ...,N, and

A = (ahk) is the real symmetric matrix whose entries are given by :

ahk = ahk(x) :=
δhk

(1 + |∇u|2)
1
2

− uhuk

(1 + |∇u|2)
3
2

. (7)

λmin(A) = 1

(1+|∇u|2)
3
2

and λmax(A) = 1

(1+|∇u|2)
1
2

.

∇u ∈ L∞(RN) =⇒ equation (6) is uniformly elliptic on RN .

The classic Liouville-type theorem =⇒ uj = const. =⇒ u affine.
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The theorem of Bombieri and Giusti

Theorem (E. Bombieri, E. Giusti, 1972)

Let N ≥ 2 and u ∈ C 2(RN) be a solution of

−div

(
∇u√

1 + |∇u|2

)
= 0 on RN ,

such that N-1 partial derivatives of u are bounded on RN .
Then u is an affine function.
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To prove their result, E. Bombieri and E. Giusti, demonstrate

a new Harnack inequality for uniformly elliptic equations on minimal
surfaces (oriented boundary of least area).

if N − 1 partial derivatives of u are bounded on RN , then u has
bounded gradient on RN .

Moser’s Theorem =⇒ the Bernstein property.

A. FARINA
SOME RIGIDITY RESULTS FOR MINIMAL GRAPHS OVER UNBOUNDED DOMAINS



The Minimal Surface Equation (MSE)
Bernstein-type results

Mains results
*

Bernstein’s Theorem
The Bernstein property (BP)
Failure of Bernstein property (BP)
Moser’s Theorem
The theorem of Bombieri and Giusti
A sharp Bernstein-type result

To prove their result, E. Bombieri and E. Giusti, demonstrate

a new Harnack inequality for uniformly elliptic equations on minimal
surfaces (oriented boundary of least area).

if N − 1 partial derivatives of u are bounded on RN , then u has
bounded gradient on RN .

Moser’s Theorem =⇒ the Bernstein property.

A. FARINA
SOME RIGIDITY RESULTS FOR MINIMAL GRAPHS OVER UNBOUNDED DOMAINS



The Minimal Surface Equation (MSE)
Bernstein-type results

Mains results
*

Bernstein’s Theorem
The Bernstein property (BP)
Failure of Bernstein property (BP)
Moser’s Theorem
The theorem of Bombieri and Giusti
A sharp Bernstein-type result

To prove their result, E. Bombieri and E. Giusti, demonstrate

a new Harnack inequality for uniformly elliptic equations on minimal
surfaces (oriented boundary of least area).

if N − 1 partial derivatives of u are bounded on RN , then u has
bounded gradient on RN .

Moser’s Theorem =⇒ the Bernstein property.

A. FARINA
SOME RIGIDITY RESULTS FOR MINIMAL GRAPHS OVER UNBOUNDED DOMAINS



The Minimal Surface Equation (MSE)
Bernstein-type results

Mains results
*

Bernstein’s Theorem
The Bernstein property (BP)
Failure of Bernstein property (BP)
Moser’s Theorem
The theorem of Bombieri and Giusti
A sharp Bernstein-type result

To prove their result, E. Bombieri and E. Giusti, demonstrate

a new Harnack inequality for uniformly elliptic equations on minimal
surfaces (oriented boundary of least area).

if N − 1 partial derivatives of u are bounded on RN , then u has
bounded gradient on RN .

Moser’s Theorem =⇒ the Bernstein property.

A. FARINA
SOME RIGIDITY RESULTS FOR MINIMAL GRAPHS OVER UNBOUNDED DOMAINS



The Minimal Surface Equation (MSE)
Bernstein-type results

Mains results
*

Bernstein’s Theorem
The Bernstein property (BP)
Failure of Bernstein property (BP)
Moser’s Theorem
The theorem of Bombieri and Giusti
A sharp Bernstein-type result

A sharp Bernstein-type result

Theorem (A.F., 2018)

Let N ≥ 8 and u ∈ C 2(RN) be a solution of

−div

(
∇u√

1 + |∇u|2

)
= 0 on RN ,

such that

N − 7 partial derivatives of u are bounded on one side
(not necessarily the same).

Then u is an affine function.

The theorem is sharp.
Its proof is completely different from the one of Bombieri and Giusti.
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A rigidity result on half-spaces

Theorem (A.F., 2022)

Assume N ≥ 2 and let Σ be an open affine half-space of RN . If
u ∈ C 2(Σ) is a solution of

−div

(
∇u√

1+|∇u|2

)
= 0 in Σ,

u > 0 in Σ,

u = 0 in ∂Σ,

then u is an affine function.

The proof is based on the following new rigidity result for entire minimal
graphs.
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Rigidity on the entire space I

Theorem (A.F., 2022)

Assume N ≥ 2 and let v ∈ C 2(RN) be a solution of the minimal surface
equation

−div

(
∇v√

1 + |∇v |2

)
= 0 on RN

If for some a, b ∈ R the set {x ∈ RN : v(x) > a|x |+ b} is contained in
an open affine half-space of RN , then u is an affine function.

The same conclusion remains true if the above assumption is replaced by:

for some a′, b′ ∈ R the set {x ∈ RN : v(x) < a′|x |+ b′} is contained in
an open affine half-space of RN .
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Proof of the main result on half-spaces

W.l.o.g we may and do suppose that Σ = {x ∈ RN : xN > 0}
Let v : RN → R be the odd extension of u with respect to ∂Σ

Thanks to the homogeneous Dirichlet boundary condition satisfied
by u, it is easily seen that v is an entire minimal graph such that

{x ∈ RN : v(x) > 0} = {x ∈ RN : xN > 0}

Theorem 1 with a = b = 0 =⇒ v is affine.

The latter implies that u is an affine function.
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A rigidity result on the entire space II

Another interesting consequence of Theorem 1 is the following

Theorem II (A.F., 2022)

Assume N ≥ 2 and let v ∈ C 2(RN) be a solution of the minimal surface
equation

−div

(
∇v√

1 + |∇v |2

)
= 0 on RN

If for some a, b ∈ R the set {x ∈ RN : v(x) > a|x |+ b} contains an open
affine half-space of RN , then u is an affine function.

The same conclusion remains true if the above assumption is replaced by:

for some a′, b′ ∈ R the set {x ∈ RN : v(x) < a′|x |+ b′} contains an
open affine half-space of RN .
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Rigidity on the entire space II : proof

By assumption, the set {x ∈ RN : v(x) > a|x |+ b} contains an open
affine half-space Σ.

Therefore, the set {x ∈ RN : v(x) < a|x |+ b} is contained in the open
affine half-space Σ′ := RN \ Σ and so v must be an affine function
thanks to Theorem 1.
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Let us recall the following well-know Liouville-type Theorem for entire
minimal graphs :

Theorem (E. Bombieri, E. De Giorgi, M.Miranda, 1969)

Let v be an entire minimal graphs such that

v(x) ≥ −K (1 + |x |) ∀ x ∈ RN ,

for some K ≥ 0. Then v is an affine function.
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Theorem (A.F., 2022)

Let Σ be an open affine half-space and let v be an entire minimal graphs
such that

v(x) ≥ −K (1 + |x |) ∀ x ∈ Σ,

for some K ≥ 0. Then v is an affine function.
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Rigidity on the entire space I : sketch of proof

W.l.o.g we may and do suppose that

{x ∈ RN : v(x) > a|x |+ b} ⊂ {x ∈ RN : xN > 0} =: Σ

u = v − v(0) is again an entire solution to (MSE) with u(0) = 0.

Let U be the subgraph of u and let Uj be the one of the function uj
defined by

uj(x) =
u(jx)

j
, x ∈ RN , j ≥ 1.

Since u and uj are solutions of the (MSE) on RN , then

Uj are non-trivial minimal sets of RN+1 with 0 ∈ ∂Uj

Also observe that Uj := U
j .
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Rigidity on the entire space I : sketch of proof

By a classical blow down procedure, a subsequence of Uj (still
denoted by Uj) converges to a minimal cone C ⊂ RN+1, with vertex
at the origin of RN+1 and s.t. 0 ∈ ∂C .
(C is usually called a blow down of U).

Recall that the blow down procedure also implies :

C half-space =⇒ U ≡ C

Hence, (by results of M. Miranda), C is itself a subgraph of a
generalized solution to the minimal surface equation
h : RN → [−∞,+∞] and the sets

P = {x ∈ RN : h(x) = +∞}, N = {x ∈ RN : h(x) = −∞}

are both minimal cones of RN .
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P = ∅.
Suppose for contradiction that P is not-empty, then P is a minimal cone
in RN , with vertex at the origin of RN (since C is a minimal cone with
vertex at the origin of RN+1).

P is contained in Σ. Indeed, if p ∈ P, then there exists an integer
j > 1 such that uj(p) > |v(0)|+ |a||p|+ |b| and so

v(jp)− v(0)

j
> |v(0)|+ |a||p|+ |b| =⇒ v(jp) > a|jp|+ b,

that is, jp ∈ {x ∈ RN : v(x) > a|x |+ b}. Therefore, jp ∈ Σ and so
also p ∈ Σ.
Since the minimal cone P is contained in the half-space Σ, then
P ≡ Σ. Thus

Σ× R = P × R ⊂ C

by construction of C and definition of P.
Therefore, C ≡ Σ× R and so U = C .
But U = C ≡ Σ× R implies that ∂U is a vertical hyperplane,
contradicting the fact ∂U is the graph of the function u.
Thus, P is empty.
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P = ∅ implies that the family of functions uj is equibounded from above
on compact sets of RN .

This and the definition of uj provide the following estimate

sup
B(0,j)

u ≤ Kj (8)

for some constant K > 0.

On the other hand, the celebrated gradient estimate of E. Bombieri, E. De
Giorgi, M.Miranda, (1969) tells us that

∀ x ∈ RN , ∀R > 0, |∇u(x)| ≤ C1exp
[
C2

( supB(x,R) u − u(x)

R

)]
(9)

where C1,C2 are constants depending only on the dimension N.

Combining (8),(9) and letting j → +∞ we obtain that |∇u| ∈ L∞(RN).

Moser’s Theorem implies that u is an affine function (and so is v).
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Minimal sets

Perimeter of measurable sets (De Giorgi 1954)

X a Lebesgue mesurable set of RN ,N ≥ 1.

The Perimeter of X in an open set Ω ⊂ RN is the total variation of the
distributional gradient of 1X in Ω, i.e.,

Per(X ,Ω) := sup
{∫

X

divg : g ∈ C 1
c (Ω,RN), ‖g‖∞ ≤ 1

}
(10)

X has locally finite perimeter in Ω if

Per(X ,A) < +∞, ∀ open set A ⊂⊂ Ω. (11)

X has locally finite perimeter in Ω if and only if 1X ∈ BVloc(Ω).

Notation : Per(X,Ω) =
∫

Ω
|D1X |.

If X is smooth set of RN , then Per(X,Ω) = HN−1(∂X ∩ Ω).
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Minimal sets

Minimal sets

E ⊂ RN is a (local) minimal set in Ω if, for every open set A ⊂⊂ Ω,

Per(E ,A) < +∞ (12)

Per(E ,A) ≤ Per(X ,A), ∀X with X∆E ⊂ A (13)
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