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The equation
Let (M, g) be a compact Riemmanian manifold of dimension n ≥ 2, and take k ∈ N
such that n > 2k ≥ 2. We are interested in functions u ∈ C2k (M) that are solutions to

Pu = |u|2
⋆−2u in M with 2⋆ :=

2n

n − 2k

and
P = ∆k

g + lot is a differential operator of order 2k.

Here, ∆g = −divg∇. Such a PDE arises in conformal geometry:

k = 1, the scalar curvature equation is

∆gu +
n − 2

4(n − 1)
Rgu =

n − 2

4(n − 1)
Rg̃u

n+2
n−2 , u > 0

where Rg (resp. Rg̃ ) is the scalar curvature of g (resp. g̃ = u
4

n−2 g).

k = 2, the Paneitz operator connects Branson’s Q−curvatures in a conformal
class too:

∆2
gu + ... = Qg̃u

n+4
n−4

More generally, for any k ≥ 1, there is the conformal GJMS operator Pg and a
notion of Q−curvature

These operators are conformally invariant in the following sense: if g̃ = u
4

n−2k g , then

Pg̃φ = u−(2⋆−1)Pg (uφ) for all φ ∈ C∞(M)
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The invariance/instability of the equation

When (M, g) = (Rn, ξ) (which is not compact...) the model is

∆k
euclU = U2⋆−1 , U > 0 in Rn.

The equation is invariant in the following sense: for x0 ∈ Rn and µ > 0, define

Uµ,x0 (x) := µ− n−2k
2 U

(
x − x0

µ

)
.

Then
∆k

ξUµ,x0 = U2⋆−1
µ,x0

, Uµ,x0 > 0 in Rn.

This invariance generates an intrinsic dynamic of the equation.

For instance, you can take

U(x) := αn,k

(
1

1 + |x |2

) n−2k
2

U
4

n−2k = α′
n,k

(
1

1 + |x |2

)2

⇒ round sphere

so that

Uµ,x0 (x) := αn,k

(
µ

µ2 + |x − x0|2

) n−2k
2

so that
lim
µ→0

Uµ,x0 (x0) = +∞ and lim
µ→0

Uµ,x0 (x) = 0 for all x ̸= x0
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The peak Uµ,x0

x

u

,1

,2

,3

,4

,5

  0

Figure: limµ→0 Uµ,x0
(x0) = +∞ and limµ→0 Uµ,x0

(x) = 0 for all x ̸= x0

Uµ,x0 (x) := αn,k

(
µ

µ2 + |x − x0|2

) n−2k
2

; ∆k
ξUµ,x0 = U2⋆−1

µ,x0
, Uµ,x0 > 0 in Rn.

⇒ Instability.

And they are going to be our model to describe instability
But there can be other types of peaks.
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Peak

Definition (Exponential chart)

A smooth exponential chart ˜exp around p0 ∈ M is a function

˜expp : Rn → M

(X 1, ...,X n) 7→ expp(
∑

i X
iEi (p))

where expp : TpM → M is the usual exponential map and (Ei (p))i=1,...,n is a smooth
orthonormal basis of TpM, p close to p0.

Definition (Peak)

We say that a family B = (Bα)α ∈ H2
k (M) is a Peak centered at (xα)α ∈ M with

radius (µα)α → 0 if there exists U ∈ D2
k (R

n), U ̸≡ 0, and an exponential chart ˜exp
around x0 := limα→0 xα and a cutoff function (ηα) such that

Bα(x) = η(x)µ
− n−2k

2
α U

(
˜exp−1

xα
(x)

µα

)
+ o(1) in H2

k (M). (1)

The pair (U, ˜expxα ) is not unique. The model is

Uµ,x0 (x) := η(x)αn,k

(
µα

µ2
α + dg (x , xα)2

) n−2k
2
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The main result

There are examples of solutions to our PDE blowing-up like peaks (Pistoia et al,
Vétois et al, Casteras-Bakri). We prove here that any blowing-up solutions behave
like a peak and has a precise localization:

Theorem (R., 2023)

Consider a family (uα)α ∈ C2k (M) such that

∆k
guα + (−1)k−1∇k−1(Aα∇k−1uα) + lot = |uα|2

⋆−2uα in M, for all α > 0.

with uα = Bα + o(1) where B = (Bα)α is a peak.

•If n > 2k + 2 (similar for n = 2k + 2), then

Weylg ⊗ B +

∫
Rn

(A∞ − AGJMS )x0

(
∇k−1U,∇k−1U

)
dX = 0

• If n = 2k + 1, then

(∫
Rn

|U|2
⋆−2U dX

)
mP∞ (x0) = 0

Moreover,

|uα(x)| ≤ C

(
µα

µ2
α + dg (x , xα)2

) n−2k
2
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A closer look at the case n > 2k + 2

If uα = Bα + o(1) for a bubble B = (Bα)α where Pαuα = |uα|2
⋆−2uα, then

Weylg ⊗ B +

∫
Rn

(A∞ − AGJMS )x0

(
∇k−1U,∇k−1U

)
dX = 0

Here
Pα → P∞ = ∆k

g + (−1)k−1∇k−1(A∞∇k−1) + lot

and Pg = ∆k
g + (−1)k−1∇k−1(AGJMS∇k−1) + lot is the conf. invariant GJMS operator

⇒ the second term measures the ”distance” of the limiting op. to the geometric op.

Weylg ⊗ B := (Weylg (x0))iαjβ

∫
Rn

XαXβ∂ij∆
k−1
eucl U

(
n − 2k

2
U + X l∂lU

)
dX

It is independent of the choice of U in the definition of the peak,

It is = 0 when Weyl vanishes at x0

It is = 0 when U is radial

It is = 0 when uα > 0 (since then, U > 0 and is then radial wrt a point)

⇒ Weylg ⊗ B arises only when dealing with sign-changing uα in the non-lcf setting
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The case of small dimension n = 2k + 1

If uα = Bα + o(1) for a bubble B = (Bα)α where Pαuα = |uα|2
⋆−2uα, then(∫

Rn
|U|2

⋆−2U dX

)
mP∞ (x0) = 0.

here, mP∞ (x0) is the mass of the limiting operator P∞ = limα→∞ Pα,

that is

G∞(x , x0) =
cn,k

dg (x , x0)n−2k
+mP∞ (x0) + o(1) as x → x0,

where G∞ is the Green’s function of P∞, that is

P∞G∞(·, y) = δy weakly in M.

What about
∫
Rn |U|2⋆−2U dX? Can it vanish? It is a possibility... Indeed

lim
|X |→∞

|X |n−2kU(X ) = Cn,k

∫
Rn

|U|2
⋆−2U dX for some Cn,k > 0.

therefore ∫
Rn

|U|2
⋆−2U dX = 0 ⇔ U(x) = o(|x |2k−n) as |x | → ∞.

This is possible only for some sign-changing U, but not all of them.
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Result+comments (localization)

Theorem (R., 2023) {
Pαuα = |uα|2

⋆−2uα in M
+ one peak Blow-up

}
⇒

Weylg ⊗ B +
∫
Rn (A∞ − AGJMS )x0

(
∇k−1U,∇k−1U

)
dX = 0 if n > 2k + 2(∫

Rn |U|2⋆−2U dX
)
mP∞ (x0) = 0 if n = 2k + 1



For k = 1, uα > 0, this theorem was proved by Druet, after earlier contributions
by Z.-C.Han, Hebey-Vaugon.

For 4th order operator (P = ∆2
g + lot) and:

Hebey-R.-Wen: partial results when P = (−∆g + lot) ◦ (−∆g + lot) and lcf
Gursky-Malchiodi: for the geometric operator P =Paneitz, (Pu ≥ 0 in M ⇒ u ≥ 0).
No local version.
Li-Xiong: compactness when P =Paneitz, uα > 0 and Green’s function is > 0.

The key is to get the pointwise control.
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Result+comments (pointwise control)

Theorem (R., 2022){
Pαuα = |uα|2

⋆−2uα in M
+ one peak Blow-up

}
⇒ |uα(x)| ≤ C

(
µα

µ2
α + dg (x , xα)2

) n−2k
2

where µ
− n−2k

2
α = |uα(xα)| = supM |uα|.

For k = 1, uα > 0, this theorem was proved by Druet-R. after earlier
contributions by Z.-C.Han, Hebey-Vaugon.

The proofs are specific to 2nd order elliptic operators via the maximum principle
(essentially). Not valid for k > 1!!

For 4th order operator (P = ∆2
g + lot):

Hebey-R.-Wen: partial control when P = (∆g + lot) ◦ (∆g + lot)
Li-Xiong: pointwise control for P =Paneitz, uα > 0 and Green’s function is > 0.

Here: we want a method in analysis that does not require geometric assumptions
or sign assumptions... because it simply more natural.

The main difficulty: how to bypass the maximum principle?
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Proof. Step 1: rescaling

∆k
ξuα + ... = u2

⋆−1
α , uα > 0 (for simplification)

Set µ
− n−2k

2
α = |uα(xα)| = supM |uα| and define (Euclidean for simplicity)

ũα(X ) := µ
n−2k

2
α uα(xα + µαX ) for X ∈ Rn

The pde rewrites {
∆k

ξ ũα + µα · (...) = ũ2
⋆−1

α in Rn

0 < ũα ≤ ũα(0) = 1

}

Elliptic regularity:

ũα → U in C2k
loc (R

n) ,

{
∆k

ξU = U2⋆−1 in Rn

0 ≤ U ≤ U(0) = 1

}
⇒ U(X ) =

(
1

1 + αn,k |x |2

) n−2k
2

Scale back:

uα(x) ≃
(

µα

µ2
α + dg (x , xα)2

) n−2k
2

in B(xα,Rµα) (⋆)

Objective: We want (⋆) on all the manifold M
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ũα(X ) := µ
n−2k

2
α uα(xα + µαX ) for X ∈ Rn

The pde rewrites {
∆k
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Proof. Step 2: the final argument in 1 page!

Write Pαuα = u2
⋆−1

α as a linear problem

Pαuα = Vαuα with Vα = u2
⋆−2

α

Let Gα be the Green’s function for Pα − Vα

For x ∈ M s.t d(x , xα) > 2Rµα, write Green’s representation on
M − B(xα,Rµα):

uα(x) =

∫
∂B(xα,Rµα)

∑
i<2k

∇iGα(x , ·) ⋆∇2k−1−iuα dvg

We know uα on the boundary: uα(z) ≃ µ
− n−2k

2
α , similar for derivatives.

If Gα has the expected behavior

|Gα(x , z)| ≃ dg (x , z)
2k−n ≃ dg (x , xα)

2k−n for z ∈ ∂B(xα,Rµα)

Then

|uα(x)| ≤ C
∑
i<2k

µn−1
α dg (x , xα)
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2
−(2k−1−i)

α ≤ C
µ

n−2k
2

α

dg (x , xα)n−2k

and then

uα(x) ≤ C

(
µα

µ2
α + dg (x , xα)2

) n−2k
2

in M − B(xα, 2Rµα) : DONE!

Except that this does not work...
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We know uα on the boundary: uα(z) ≃ µ
− n−2k
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α , similar for derivatives

If Gα has the expected behavior:

NO its doesn’t!!!

|Gα(x , z)|̸≃dg (x , z)
2k−n ≃ dg (x , xα)

2k−n for z ∈ ∂B(xα,Rµα)

SO, we must get a reasonable control for the Green’s function of

Pα − Vα = Pα − u2
⋆−2

α

with a potential that is blowing-up.Fortunately, this is a very particular potential.
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Intermission: Vα = u2
⋆−2

α is a Hardy-potential
Let us go back to the invariance. A paramount quantity here is

wα(x) := dg (x , xα)
n−2k

2 uα(x) (⋆)

originating in Schoen-Zhang.

Why? For a function U : Rn → R, recall Uµ,x0 (x) := µ− n−2k
2 U

(
x−x0
µ

)
. Then

|x − x0|
n−2k

2 |Uµ,x0 (x)| = |X |
n−2k

2 |U(X )| with x = x0 + µαX

= C

(
|X |

1 + |X |2

) n−2k
2

: Bounded and << 1 for |X | >> 1

So, more or less, the quantity (⋆) is preserved after the change of function.

Claim 1: (wα) is bounded:

dg (x , xα)
n−2k

2 |uα(x)| ≤ C ⇒ |Vα(x)| ≤
C

dg (x , xα)2k
: Hardy potential

wα(x) is small ”far from the peak”:

lim
R→+∞

lim
α→+∞

sup
M−B(xα,Rµα)

dg(x, xα)
n−2k

2 |uα(x)| = 0

So ∀ϵ > 0, ∃Rϵ > 0 such that |Vα(x)| ≤
ϵ

dg (x , xα)2k
for all dg (x , xα) > Rϵµα
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Back to the proof: What we consider now

Our equation rewrites
(Pα − Vα)uα = 0

and

∀ϵ > 0, ∃Rϵ > 0 such that |Vα(x)| ≤
ϵ

dg (x , xα)2k
for all dg (x , xα) > Rϵµα

In order to perform the argument that failed earlier, we need to get a pointwise
control on Gα, the Green’s function of Pα − Vα with the property above.

What we get (2/3 of the paper):

When x , y ∈ M are far from the singularity xα, then

|Gα(x , y)| ≤ Cdg (x , y)
2k−n ⇒ Good

When x is close to the singularity xα, and y is far, then

|Gα(x , y)| ≤ Cdg (x , xα)
−γ

where γ > 0 can be chosen as small as we want when ϵ > 0 is small enough:
Good.

For general x , y : a mix of these two cases.

We get a sharp control of the Green’s function and of its derivatives
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At the end of the day, we have proved that

Theorem (R., 2022) Pαuα = |uα|2
⋆−2uα in M

+ Blow-up
+ Minimal energy

⇒ |uα(x)| ≤ C

(
µα

µ2
α + dg (x , xα)2

) n−2k
2

where µ
− n−2k

2
α = |uα(xα)| = supM |uα|.

16 / 20



At the end of the day, we have proved that

Theorem (R., 2022) Pαuα = |uα|2
⋆−2uα in M

+ Blow-up
+ Minimal energy

⇒ |uα(x)| ≤ C

(
µα

µ2
α + dg (x , xα)2

) n−2k
2

where µ
− n−2k

2
α = |uα(xα)| = supM |uα|.

16 / 20



Proof of the localization via Pohozaev’s identity

For any function v : Rn → R and Ω ⊂ Rn, we have that∫
Ω

(
x i∂iv +

n − 2k

2
v

)(
∆k

ξv − |v |2
⋆−2v

)
dx =

∫
∂Ω

. . .

Our equation is

∆k
guα + (−1)k−1∇k−1(Aα∇k−1uα) + lot = |uα|2

⋆−2uα in M

we write it as

Pguα + (−1)k−1∇k−1((Aα − AGJMS )∇k−1uα) + lot = |uα|2
⋆−2uα in M

we can change the metric in metric g̃ conformal to g becomes ”almost flat”, that is
Ricg̃ (xα) = 0. We then write

∆k
g̃uα + (−1)k−1∇k−1((Aα − AGJMS )∇k−1uα) + lot = |uα|2

⋆−2uα in M

In the Pohozaev identity, we then get∫
Ω

(
x i∂iuα +

n − 2k

2
uα

)(
(∆k

ξ −∆k
g̃ )uα − (−1)k−1∇k−1((Aα − AGJMS )∇k−1uα)

)
dx = ...
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In the Pohozaev identity, we then get

∫
Ω
T (uα)

(∆k
ξ −∆k

g̃ )uα︸ ︷︷ ︸
measures g̃−ξ

−(−1)k−1∇k−1( (Aα − AGJMS )︸ ︷︷ ︸
distance from the conf.op.

∇k−1uα)

 dx = ...

where T (uα) := x i∂iuα + n−2k
2

uα.

When n > 2k + 2, we get

Weylg ⊗ B +

∫
Rn

(A∞ − AGJMS )x0

(
∇k−1U,∇k−1U

)
dX = 0
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A corollary: Sobolev inequality in the Alps

On (M, g) of dimension n ≥ 5, see Hebey, there exists B > 0 such that the following
Sobolev inequality holds:

(∫
M
|u|

2n
n−4 dvg

) n−4
n

≤ K4(n)

(∫
M
(∆gu)

2 dvg + B∥u∥2
H2
1

)
for all u ∈ H2

2 (M). (IB)

where K4(n) is the optimal Euclidean constant.

Let B0(g) be the smallest number B
such that this inequality holds for all u ∈ H2

2 (M).

Theorem

Assume that n ≥ 6. Then if there is no nontrivial extremal for (IB0(g)), then

B0(g) =
3n2 − 6n − 12

6n(n − 1)
maxx∈MRg (x).
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Paneitz operator and Q−curvature

Pagu = ∆2
gu − divg

[
(anSgg + bnRicg )

#du
]
+

n − 4

2
Qgu,

an =
(n − 2)2 + 4

2(n − 1)(n − 2)
, bn = −

4

n − 2
,

Qn
g =

1

2(n − 1)
∆gRg +

n3 − 4n2 + 16n − 16

8(n − 1)2(n − 2)2
R2
g −

2

(n − 2)2
|Ricg |2g .
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