Localization of peaks for high-order equations

Frédéric Robert
Institut Elie Cartan, Université de Lorraine (Nancy)

Grenoble, June 2023

The equation
Let (M, g) be a compact Riemmanian manifold of dimension $n \geq 2$, and take $k \in \mathbb{N}$ such that $n>2 k \geq 2$. We are interested in functions $u \in C^{2 k}(M)$ that are solutions to

$$
P u=|u|^{2^{\star}-2} u \text { in } M \text { with } 2^{\star}:=\frac{2 n}{n-2 k}
$$

and

$$
P=\Delta_{g}^{k}+l o t \text { is a differential operator of order } 2 k
$$

Let (M, g) be a compact Riemmanian manifold of dimension $n \geq 2$, and take $k \in \mathbb{N}$ such that $n>2 k \geq 2$. We are interested in functions $u \in C^{2 k}(M)$ that are solutions to

$$
P u=|u|^{2^{\star}-2} u \text { in } M \text { with } 2^{\star}:=\frac{2 n}{n-2 k}
$$

and

$$
P=\Delta_{g}^{k}+l o t \text { is a differential operator of order } 2 k
$$

Here, $\Delta_{g}=-\operatorname{div}_{g} \nabla$. Such a PDE arises in conformal geometry:

- $\mathbf{k}=\mathbf{1}$, the scalar curvature equation is

$$
\Delta_{g} u+\frac{n-2}{4(n-1)} R_{g} u=\frac{n-2}{4(n-1)} R_{\tilde{g}} u^{\frac{n+2}{n-2}}, u>0
$$

where R_{g} (resp. $R_{\tilde{g}}$) is the scalar curvature of g (resp. $\tilde{g}=u^{\frac{4}{n-2}} g$).

- $\mathbf{k}=\mathbf{2}$, the Paneitz operator connects Branson's Q-curvatures in a conformal class too:

$$
\Delta_{g}^{2} u+\ldots=Q_{\tilde{g}} u^{\frac{n+4}{n-4}}
$$

Let (M, g) be a compact Riemmanian manifold of dimension $n \geq 2$, and take $k \in \mathbb{N}$ such that $n>2 k \geq 2$. We are interested in functions $u \in C^{2 k}(M)$ that are solutions to

$$
P u=|u|^{2^{\star}-2} u \text { in } M \text { with } 2^{\star}:=\frac{2 n}{n-2 k}
$$

and

$$
P=\Delta_{g}^{k}+l o t \text { is a differential operator of order } 2 k
$$

Here, $\Delta_{g}=-\operatorname{div}_{g} \nabla$. Such a PDE arises in conformal geometry:

- $\mathbf{k}=\mathbf{1}$, the scalar curvature equation is

$$
\Delta_{g} u+\frac{n-2}{4(n-1)} R_{g} u=\frac{n-2}{4(n-1)} R_{\tilde{g}} u^{\frac{n+2}{n-2}}, u>0
$$

where R_{g} (resp. $R_{\tilde{g}}$) is the scalar curvature of g (resp. $\tilde{g}=u^{\frac{4}{n-2}} g$).

- $\mathbf{k}=\mathbf{2}$, the Paneitz operator connects Branson's Q-curvatures in a conformal class too:

$$
\Delta_{g}^{2} u+\ldots=Q_{\tilde{g}} u^{\frac{n+4}{n-4}}
$$

- More generally, for any $\mathbf{k} \geq \mathbf{1}$, there is the conformal GJMS operator P_{g} and a notion of Q-curvature

Let (M, g) be a compact Riemmanian manifold of dimension $n \geq 2$, and take $k \in \mathbb{N}$ such that $n>2 k \geq 2$. We are interested in functions $u \in C^{2 k}(M)$ that are solutions to

$$
P u=|u|^{2^{\star}-2} u \text { in } M \text { with } 2^{\star}:=\frac{2 n}{n-2 k}
$$

and

$$
P=\Delta_{g}^{k}+l o t \text { is a differential operator of order } 2 k
$$

Here, $\Delta_{g}=-\operatorname{div}_{g} \nabla$. Such a PDE arises in conformal geometry:

- $\mathbf{k}=\mathbf{1}$, the scalar curvature equation is

$$
\Delta_{g} u+\frac{n-2}{4(n-1)} R_{g} u=\frac{n-2}{4(n-1)} R_{\tilde{g}} u^{\frac{n+2}{n-2}}, u>0
$$

where $R_{g}\left(\right.$ resp. $\left.R_{\tilde{g}}\right)$ is the scalar curvature of g (resp. $\tilde{g}=u^{\frac{4}{n-2}} g$).

- $\mathbf{k}=\mathbf{2}$, the Paneitz operator connects Branson's Q-curvatures in a conformal class too:

$$
\Delta_{g}^{2} u+\ldots=Q_{\tilde{g}} u^{\frac{n+4}{n-4}}
$$

- More generally, for any $\mathbf{k} \geq \mathbf{1}$, there is the conformal GJMS operator P_{g} and a notion of Q-curvature
These operators are conformally invariant in the following sense: if $\tilde{g}=u^{\frac{4}{n-2 k}} g$, then

$$
P_{\tilde{g}} \varphi=u^{-\left(2^{\star}-1\right)} P_{g}(u \varphi) \text { for all } \varphi \in C^{\infty}(M)
$$

The invariance/instability of the equation
When $(\mathbf{M}, \mathbf{g})=\left(\mathbb{R}^{\mathbf{n}}, \xi\right)$ (which is not compact...) the model is

$$
\Delta_{\text {eucl }}^{k} U=U^{2^{\star}-1}, U>0 \text { in } \mathbb{R}^{n} .
$$

When $(\mathbf{M}, \mathbf{g})=\left(\mathbb{R}^{\mathbf{n}}, \xi\right)$ (which is not compact...) the model is

$$
\Delta_{\text {eucl }}^{k} U=U^{2^{\star}-1}, U>0 \text { in } \mathbb{R}^{n} .
$$

The equation is invariant in the following sense: for $x_{0} \in \mathbb{R}^{n}$ and $\mu>0$, define

$$
U_{\mu, x_{0}}(x):=\mu^{-\frac{n-2 k}{2}} U\left(\frac{x-x_{0}}{\mu}\right)
$$

When $(\mathbf{M}, \mathbf{g})=\left(\mathbb{R}^{\mathbf{n}}, \xi\right)$ (which is not compact...) the model is

$$
\Delta_{\text {eucl }}^{k} U=U^{2^{\star}-1}, U>0 \text { in } \mathbb{R}^{n} .
$$

The equation is invariant in the following sense: for $x_{0} \in \mathbb{R}^{n}$ and $\mu>0$, define

$$
U_{\mu, x_{0}}(x):=\mu^{-\frac{n-2 k}{2}} U\left(\frac{x-x_{0}}{\mu}\right)
$$

Then

$$
\Delta_{\xi}^{k} U_{\mu, x_{0}}=U_{\mu, x_{0}}^{2^{\star}-1}, U_{\mu, x_{0}}>0 \text { in } \mathbb{R}^{n} .
$$

When $(\mathbf{M}, \mathbf{g})=\left(\mathbb{R}^{\mathbf{n}}, \xi\right)$ (which is not compact...) the model is

$$
\Delta_{\text {eucl }}^{k} U=U^{2^{\star}-1}, U>0 \text { in } \mathbb{R}^{n} .
$$

The equation is invariant in the following sense: for $x_{0} \in \mathbb{R}^{n}$ and $\mu>0$, define

$$
U_{\mu, x_{0}}(x):=\mu^{-\frac{n-2 k}{2}} U\left(\frac{x-x_{0}}{\mu}\right) .
$$

Then

$$
\Delta_{\xi}^{k} U_{\mu, x_{0}}=U_{\mu, x_{0}}^{2^{\star}-1}, U_{\mu, x_{0}}>0 \text { in } \mathbb{R}^{n} .
$$

This invariance generates an intrinsic dynamic of the equation.
For instance, you can take

$$
U(x):=\alpha_{n, k}\left(\frac{1}{1+|x|^{2}}\right)^{\frac{n-2 k}{2}} \quad U^{\frac{4}{n-2 k}}=\alpha_{n, k}^{\prime}\left(\frac{1}{1+|x|^{2}}\right)^{2} \Rightarrow \text { round sphere }
$$

so that

$$
U_{\mu, x_{0}}(x):=\alpha_{n, k}\left(\frac{\mu}{\mu^{2}+\left|x-x_{0}\right|^{2}}\right)^{\frac{n-2 k}{2}}
$$

so that

$$
\lim _{\mu \rightarrow 0} U_{\mu, x_{0}}\left(x_{0}\right)=+\infty \text { and } \lim _{\mu \rightarrow 0} U_{\mu, x_{0}}(x)=0 \text { for all } x \neq x_{0}
$$

Figure: $\lim _{\mu \rightarrow 0} U_{\mu, x_{0}}\left(x_{0}\right)=+\infty$ and $\lim _{\mu \rightarrow 0} U_{\mu, x_{0}}(x)=0$ for all $x \neq x_{0}$

$$
U_{\mu, x_{0}}(x):=\alpha_{n, k}\left(\frac{\mu}{\mu^{2}+\left|x-x_{0}\right|^{2}}\right)^{\frac{n-2 k}{2}} ; \Delta_{\xi}^{k} U_{\mu, x_{0}}=U_{\mu, x_{0}}^{2^{\star}-1}, U_{\mu, x_{0}}>0 \text { in } \mathbb{R}^{n}
$$

\Rightarrow Instability.

Figure: $\lim _{\mu \rightarrow 0} U_{\mu, x_{0}}\left(x_{0}\right)=+\infty$ and $\lim _{\mu \rightarrow 0} U_{\mu, x_{0}}(x)=0$ for all $x \neq x_{0}$

$$
U_{\mu, x_{0}}(x):=\alpha_{n, k}\left(\frac{\mu}{\mu^{2}+\left|x-x_{0}\right|^{2}}\right)^{\frac{n-2 k}{2}} ; \Delta_{\xi}^{k} U_{\mu, x_{0}}=U_{\mu, x_{0}}^{2^{\star}-1}, U_{\mu, x_{0}}>0 \text { in } \mathbb{R}^{n}
$$

\Rightarrow Instability.
And they are going to be our model to describe instability But there can be other types of peaks.

Definition (Exponential chart)

A smooth exponential chart ex̃p around $p_{0} \in M$ is a function

$$
\begin{array}{cccc}
\operatorname{exx}_{p}: & \mathbb{R}^{n} & \rightarrow & M \\
& \left(X^{1}, \ldots, X^{n}\right) & \mapsto & \exp _{p}\left(\sum_{i} X^{i} E_{i}(p)\right)
\end{array}
$$

where $\exp _{p}: T_{p} M \rightarrow M$ is the usual exponential map and $\left(E_{i}(p)\right)_{i=1, \ldots, n}$ is a smooth orthonormal basis of $T_{p} M, p$ close to p_{0}.

Definition (Exponential chart)

A smooth exponential chart ex̃p around $p_{0} \in M$ is a function

$$
\begin{array}{cccc}
\operatorname{exx}_{p}: & \mathbb{R}^{n} & \rightarrow & M \\
& \left(X^{1}, \ldots, X^{n}\right) & \mapsto & \exp _{p}\left(\sum_{i} X^{i} E_{i}(p)\right)
\end{array}
$$

where $\exp _{p}: T_{p} M \rightarrow M$ is the usual exponential map and $\left(E_{i}(p)\right)_{i=1, \ldots, n}$ is a smooth orthonormal basis of $T_{p} M, p$ close to p_{0}.

Definition (Peak)

We say that a family $B=\left(B_{\alpha}\right)_{\alpha} \in H_{k}^{2}(M)$ is a Peak centered at $\left(x_{\alpha}\right)_{\alpha} \in M$ with radius $\left(\mu_{\alpha}\right)_{\alpha} \rightarrow 0$ if there exists $U \in D_{k}^{2}\left(\mathbb{R}^{n}\right), U \not \equiv 0$, and an exponential chart e $\tilde{x} p$ around $x_{0}:=\lim _{\alpha \rightarrow 0} x_{\alpha}$ and a cutoff function $\left(\eta_{\alpha}\right)$ such that

$$
\begin{equation*}
B_{\alpha}(x)=\eta(x) \mu_{\alpha}^{-\frac{n-2 k}{2}} U\left(\frac{e \tilde{x} p_{x_{\alpha}}^{-1}(x)}{\mu_{\alpha}}\right)+o(1) \text { in } H_{k}^{2}(M) . \tag{1}
\end{equation*}
$$

Definition (Exponential chart)

A smooth exponential chart ex̃p around $p_{0} \in M$ is a function

$$
\begin{array}{cccc}
\operatorname{exx}_{p}: & \mathbb{R}^{n} & \rightarrow & M \\
& \left(X^{1}, \ldots, X^{n}\right) & \mapsto & \exp _{p}\left(\sum_{i} X^{i} E_{i}(p)\right)
\end{array}
$$

where $\exp _{p}: T_{p} M \rightarrow M$ is the usual exponential map and $\left(E_{i}(p)\right)_{i=1, \ldots, n}$ is a smooth orthonormal basis of $T_{p} M, p$ close to p_{0}.

Definition (Peak)

We say that a family $B=\left(B_{\alpha}\right)_{\alpha} \in H_{k}^{2}(M)$ is a Peak centered at $\left(x_{\alpha}\right)_{\alpha} \in M$ with radius $\left(\mu_{\alpha}\right)_{\alpha} \rightarrow 0$ if there exists $U \in D_{k}^{2}\left(\mathbb{R}^{n}\right), \overline{U \not \equiv 0}$, and an exponential chart ẽ̃p around $x_{0}:=\lim _{\alpha \rightarrow 0} x_{\alpha}$ and a cutoff function $\left(\eta_{\alpha}\right)$ such that

$$
\begin{equation*}
B_{\alpha}(x)=\eta(x) \mu_{\alpha}^{-\frac{n-2 k}{2}} U\left(\frac{e \tilde{x} p_{x_{\alpha}}^{-1}(x)}{\mu_{\alpha}}\right)+o(1) \text { in } H_{k}^{2}(M) . \tag{1}
\end{equation*}
$$

The pair $\left(U, e^{\mathrm{ex}} \mathrm{p}_{x_{\alpha}}\right)$ is not unique.

Definition (Exponential chart)

A smooth exponential chart ex̃p around $p_{0} \in M$ is a function

$$
\begin{array}{cccc}
\operatorname{exx}_{p}: & \mathbb{R}^{n} & \rightarrow & M \\
& \left(X^{1}, \ldots, X^{n}\right) & \mapsto & \exp _{p}\left(\sum_{i} X^{i} E_{i}(p)\right)
\end{array}
$$

where $\exp _{p}: T_{p} M \rightarrow M$ is the usual exponential map and $\left(E_{i}(p)\right)_{i=1, \ldots, n}$ is a smooth orthonormal basis of $T_{p} M, p$ close to p_{0}.

Definition (Peak)

We say that a family $B=\left(B_{\alpha}\right)_{\alpha} \in H_{k}^{2}(M)$ is a Peak centered at $\left(x_{\alpha}\right)_{\alpha} \in M$ with radius $\left(\mu_{\alpha}\right)_{\alpha} \rightarrow 0$ if there exists $U \in D_{k}^{2}\left(\mathbb{R}^{n}\right), U \not \equiv 0$, and an exponential chart e ẽp around $x_{0}:=\lim _{\alpha \rightarrow 0} x_{\alpha}$ and a cutoff function $\left(\eta_{\alpha}\right)$ such that

$$
\begin{equation*}
B_{\alpha}(x)=\eta(x) \mu_{\alpha}^{-\frac{n-2 k}{2}} U\left(\frac{e \tilde{x} p_{x_{\alpha}}^{-1}(x)}{\mu_{\alpha}}\right)+o(1) \text { in } H_{k}^{2}(M) . \tag{1}
\end{equation*}
$$

The pair $\left(U, \operatorname{ex̃}_{x_{\alpha}}\right)$ is not unique. The model is

$$
U_{\mu, x_{0}}(x):=\eta(x) \alpha_{n, k}\left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2}+d_{g}\left(x, x_{\alpha}\right)^{2}}\right)^{\frac{n-2 k}{2}}
$$

There are examples of solutions to our PDE blowing-up like peaks (Pistoia et al, Vétois et al, Casteras-Bakri). We prove here that any blowing-up solutions behave like a peak and has a precise localization:

There are examples of solutions to our PDE blowing-up like peaks (Pistoia et al, Vétois et al, Casteras-Bakri). We prove here that any blowing-up solutions behave like a peak and has a precise localization:

Theorem (R., 2023)

Consider a family $\left(u_{\alpha}\right)_{\alpha} \in C^{2 k}(M)$ such that

$$
\begin{aligned}
& \Delta_{g}^{k} u_{\alpha}+(-1)^{k-1} \nabla^{k-1}\left(A_{\alpha} \nabla^{k-1} u_{\alpha}\right)+\text { lot }=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M, \text { for all } \alpha>0 . \\
& \text { with } u_{\alpha}=B_{\alpha}+o(1) \text { where } B=\left(B_{\alpha}\right)_{\alpha} \text { is a peak. }
\end{aligned}
$$

There are examples of solutions to our PDE blowing-up like peaks (Pistoia et al, Vétois et al, Casteras-Bakri). We prove here that any blowing-up solutions behave like a peak and has a precise localization:

Theorem (R., 2023)

Consider a family $\left(u_{\alpha}\right)_{\alpha} \in C^{2 k}(M)$ such that

$$
\begin{gathered}
\Delta_{g}^{k} u_{\alpha}+(-1)^{k-1} \nabla^{k-1}\left(A_{\alpha} \nabla^{k-1} u_{\alpha}\right)+\text { lot }=\left.\left|u_{\alpha}\right|\right|^{2^{\star}-2} u_{\alpha} \text { in } M, \text { for all } \alpha>0 . \\
\text { with } u_{\alpha}=B_{\alpha}+o(1) \text { where } B=\left(B_{\alpha}\right)_{\alpha} \text { is a peak. } \\
\text { •If } n>2 k+2 \text { (similar for } n=2 k+2) \text {, then } \\
\text { Weylg } \otimes B+\int_{\mathbb{R}^{n}}\left(A_{\infty}-A_{G J M S}\right)_{x_{0}}\left(\nabla^{k-1} U, \nabla^{k-1} U\right) d X=0 \\
\text { • If } n=2 k+1, \text { then }\left(\int_{\mathbb{R}^{n}}|U|^{2^{\star}-2} U d X\right) m_{P_{\infty}}\left(x_{0}\right)=0
\end{gathered}
$$

There are examples of solutions to our PDE blowing-up like peaks (Pistoia et al, Vétois et al, Casteras-Bakri). We prove here that any blowing-up solutions behave like a peak and has a precise localization:

Theorem (R., 2023)

Consider a family $\left(u_{\alpha}\right)_{\alpha} \in C^{2 k}(M)$ such that

$$
\begin{gathered}
\Delta_{g}^{k} u_{\alpha}+(-1)^{k-1} \nabla^{k-1}\left(A_{\alpha} \nabla^{k-1} u_{\alpha}\right)+\text { lot }=\left.\left|u_{\alpha}\right|\right|^{2^{\star}-2} u_{\alpha} \text { in } M, \text { for all } \alpha>0 . \\
\text { with } u_{\alpha}=B_{\alpha}+o(1) \text { where } B=\left(B_{\alpha}\right)_{\alpha} \text { is a peak. } \\
\text { •If } n>2 k+2 \text { (similar for } n=2 k+2) \text {, then } \\
\text { Weylg } \otimes B+\int_{\mathbb{R}^{n}}\left(A_{\infty}-A_{G J M S}\right)_{x_{0}}\left(\nabla^{k-1} U, \nabla^{k-1} U\right) d X=0 \\
\text { • If } n=2 k+1, \text { then }\left(\int_{\mathbb{R}^{n}}|U|^{2^{\star}-2} U d X\right) m_{P_{\infty}}\left(x_{0}\right)=0
\end{gathered}
$$

Moreover,

$$
\left|u_{\alpha}(x)\right| \leq C\left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2}+d_{g}\left(x, x_{\alpha}\right)^{2}}\right)^{\frac{n-2 k}{2}}
$$

A closer look at the case $n>2 k+2$

If $u_{\alpha}=B_{\alpha}+o(1)$ for a bubble $B=\left(B_{\alpha}\right)_{\alpha}$ where $P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha}$, then

$$
\text { Weyl }_{g} \otimes B+\int_{\mathbb{R}^{n}}\left(A_{\infty}-A_{G J M S}\right)_{x_{0}}\left(\nabla^{k-1} U, \nabla^{k-1} U\right) d X=0
$$

Here

$$
P_{\alpha} \rightarrow P_{\infty}=\Delta_{g}^{k}+(-1)^{k-1} \nabla^{k-1}\left(A_{\infty} \nabla^{k-1}\right)+\text { lot }
$$

and $P_{g}=\Delta_{g}^{k}+(-1)^{k-1} \nabla^{k-1}\left(A_{G J M S} \nabla^{k-1}\right)+$ lot is the conf. invariant GJMS operator

A closer look at the case $n>2 k+2$

If $u_{\alpha}=B_{\alpha}+o(1)$ for a bubble $B=\left(B_{\alpha}\right)_{\alpha}$ where $P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha}$, then

$$
\text { Weyl }_{g} \otimes B+\int_{\mathbb{R}^{n}}\left(A_{\infty}-A_{G J M S}\right)_{x_{0}}\left(\nabla^{k-1} U, \nabla^{k-1} U\right) d X=0
$$

Here

$$
P_{\alpha} \rightarrow P_{\infty}=\Delta_{g}^{k}+(-1)^{k-1} \nabla^{k-1}\left(A_{\infty} \nabla^{k-1}\right)+\text { lot }
$$

and $P_{g}=\Delta_{g}^{k}+(-1)^{k-1} \nabla^{k-1}\left(A_{G J M S} \nabla^{k-1}\right)+$ lot is the conf. invariant GJMS operator
\Rightarrow the second term measures the "distance" of the limiting op. to the geometric op.

A closer look at the case $n>2 k+2$

If $u_{\alpha}=B_{\alpha}+o(1)$ for a bubble $B=\left(B_{\alpha}\right)_{\alpha}$ where $P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha}$, then

$$
\text { Weyl }_{g} \otimes B+\int_{\mathbb{R}^{n}}\left(A_{\infty}-A_{G J M S}\right)_{x_{0}}\left(\nabla^{k-1} U, \nabla^{k-1} U\right) d X=0
$$

Here

$$
P_{\alpha} \rightarrow P_{\infty}=\Delta_{g}^{k}+(-1)^{k-1} \nabla^{k-1}\left(A_{\infty} \nabla^{k-1}\right)+\operatorname{lot}
$$

and $P_{g}=\Delta_{g}^{k}+(-1)^{k-1} \nabla^{k-1}\left(A_{G J M S} \nabla^{k-1}\right)+$ lot is the conf. invariant GJMS operator
\Rightarrow the second term measures the "distance" of the limiting op. to the geometric op.

$$
\text { Weyl }_{g} \otimes B:=\left(\text { Weylg }_{g}\left(x_{0}\right)\right)_{i \alpha j \beta} \int_{\mathbb{R}^{n}} X^{\alpha} X^{\beta} \partial_{i j} \Delta_{\text {eucl }}^{k-1} U\left(\frac{n-2 k}{2} U+X^{\prime} \partial_{l} U\right) d X
$$

A closer look at the case $n>2 k+2$

If $u_{\alpha}=B_{\alpha}+o(1)$ for a bubble $B=\left(B_{\alpha}\right)_{\alpha}$ where $P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha}$, then

$$
\text { Weyl }_{g} \otimes B+\int_{\mathbb{R}^{n}}\left(A_{\infty}-A_{G J M S}\right)_{x_{0}}\left(\nabla^{k-1} U, \nabla^{k-1} U\right) d X=0
$$

Here

$$
P_{\alpha} \rightarrow P_{\infty}=\Delta_{g}^{k}+(-1)^{k-1} \nabla^{k-1}\left(A_{\infty} \nabla^{k-1}\right)+\operatorname{lot}
$$

and $P_{g}=\Delta_{g}^{k}+(-1)^{k-1} \nabla^{k-1}\left(A_{G J M S} \nabla^{k-1}\right)+$ lot is the conf. invariant GJMS operator
\Rightarrow the second term measures the "distance" of the limiting op. to the geometric op.

$$
\text { Weyl }_{g} \otimes B:=\left(\text { Weylg }_{g}\left(x_{0}\right)\right)_{i \alpha j \beta} \int_{\mathbb{R}^{n}} X^{\alpha} X^{\beta} \partial_{i j} \Delta_{\text {eucl }}^{k-1} U\left(\frac{n-2 k}{2} U+X^{\prime} \partial_{l} U\right) d X
$$

- It is independent of the choice of U in the definition of the peak,

A closer look at the case $n>2 k+2$

If $u_{\alpha}=B_{\alpha}+o(1)$ for a bubble $B=\left(B_{\alpha}\right)_{\alpha}$ where $P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha}$, then

$$
\text { Weyl }_{g} \otimes B+\int_{\mathbb{R}^{n}}\left(A_{\infty}-A_{G J M S}\right)_{x_{0}}\left(\nabla^{k-1} U, \nabla^{k-1} U\right) d X=0
$$

Here

$$
P_{\alpha} \rightarrow P_{\infty}=\Delta_{g}^{k}+(-1)^{k-1} \nabla^{k-1}\left(A_{\infty} \nabla^{k-1}\right)+\operatorname{lot}
$$

and $P_{g}=\Delta_{g}^{k}+(-1)^{k-1} \nabla^{k-1}\left(A_{G J M S} \nabla^{k-1}\right)+$ lot is the conf. invariant GJMS operator
\Rightarrow the second term measures the "distance" of the limiting op. to the geometric op.

$$
\text { Weyl }_{g} \otimes B:=\left(\text { Weylg }_{g}\left(x_{0}\right)\right)_{i \alpha j \beta} \int_{\mathbb{R}^{n}} X^{\alpha} X^{\beta} \partial_{i j} \Delta_{\text {eucl }}^{k-1} U\left(\frac{n-2 k}{2} U+X^{\prime} \partial_{l} U\right) d X
$$

- It is independent of the choice of U in the definition of the peak,
- It is $=0$ when Weyl vanishes at x_{0}

A closer look at the case $n>2 k+2$

If $u_{\alpha}=B_{\alpha}+o(1)$ for a bubble $B=\left(B_{\alpha}\right)_{\alpha}$ where $P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha}$, then

$$
\text { Weyl }_{g} \otimes B+\int_{\mathbb{R}^{n}}\left(A_{\infty}-A_{G J M S}\right)_{x_{0}}\left(\nabla^{k-1} U, \nabla^{k-1} U\right) d X=0
$$

Here

$$
P_{\alpha} \rightarrow P_{\infty}=\Delta_{g}^{k}+(-1)^{k-1} \nabla^{k-1}\left(A_{\infty} \nabla^{k-1}\right)+\operatorname{lot}
$$

and $P_{g}=\Delta_{g}^{k}+(-1)^{k-1} \nabla^{k-1}\left(A_{G J M S} \nabla^{k-1}\right)+$ lot is the conf. invariant GJMS operator
\Rightarrow the second term measures the "distance" of the limiting op. to the geometric op.

$$
\text { Weyl }_{g} \otimes B:=\left(\text { Weylg }_{g}\left(x_{0}\right)\right)_{i \alpha j \beta} \int_{\mathbb{R}^{n}} X^{\alpha} X^{\beta} \partial_{i j} \Delta_{\text {eucl }}^{k-1} U\left(\frac{n-2 k}{2} U+X^{\prime} \partial_{l} U\right) d X
$$

- It is independent of the choice of U in the definition of the peak,
- It is $=0$ when Weyl vanishes at x_{0}
- It is $=0$ when U is radial

A closer look at the case $n>2 k+2$

If $u_{\alpha}=B_{\alpha}+o(1)$ for a bubble $B=\left(B_{\alpha}\right)_{\alpha}$ where $P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha}$, then

$$
\text { Weyl }_{g} \otimes B+\int_{\mathbb{R}^{n}}\left(A_{\infty}-A_{G J M S}\right)_{x_{0}}\left(\nabla^{k-1} U, \nabla^{k-1} U\right) d X=0
$$

Here

$$
P_{\alpha} \rightarrow P_{\infty}=\Delta_{g}^{k}+(-1)^{k-1} \nabla^{k-1}\left(A_{\infty} \nabla^{k-1}\right)+\operatorname{lot}
$$

and $P_{g}=\Delta_{g}^{k}+(-1)^{k-1} \nabla^{k-1}\left(A_{G J M S} \nabla^{k-1}\right)+$ lot is the conf. invariant GJMS operator
\Rightarrow the second term measures the "distance" of the limiting op. to the geometric op.

$$
\text { Weyl }_{g} \otimes B:=\left(\text { Weylg }_{g}\left(x_{0}\right)\right)_{i \alpha j \beta} \int_{\mathbb{R}^{n}} X^{\alpha} X^{\beta} \partial_{i j} \Delta_{\text {eucl }}^{k-1} U\left(\frac{n-2 k}{2} U+X^{\prime} \partial_{l} U\right) d X
$$

- It is independent of the choice of U in the definition of the peak,
- It is $=0$ when Weyl vanishes at x_{0}
- It is $=0$ when U is radial
- It is $=0$ when $u_{\alpha}>0$ (since then, $U>0$ and is then radial wrt a point)

A closer look at the case $n>2 k+2$

If $u_{\alpha}=B_{\alpha}+o(1)$ for a bubble $B=\left(B_{\alpha}\right)_{\alpha}$ where $P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha}$, then

$$
\text { Weyl }_{g} \otimes B+\int_{\mathbb{R}^{n}}\left(A_{\infty}-A_{G J M S}\right)_{x_{0}}\left(\nabla^{k-1} U, \nabla^{k-1} U\right) d X=0
$$

Here

$$
P_{\alpha} \rightarrow P_{\infty}=\Delta_{g}^{k}+(-1)^{k-1} \nabla^{k-1}\left(A_{\infty} \nabla^{k-1}\right)+\operatorname{lot}
$$

and $P_{g}=\Delta_{g}^{k}+(-1)^{k-1} \nabla^{k-1}\left(A_{G J M S} \nabla^{k-1}\right)+$ lot is the conf. invariant GJMS operator
\Rightarrow the second term measures the "distance" of the limiting op. to the geometric op.

$$
\text { Weyl }_{g} \otimes B:=\left(\text { Weylg }_{g}\left(x_{0}\right)\right)_{i \alpha j \beta} \int_{\mathbb{R}^{n}} X^{\alpha} X^{\beta} \partial_{i j} \Delta_{\text {eucl }}^{k-1} U\left(\frac{n-2 k}{2} U+X^{\prime} \partial_{l} U\right) d X
$$

- It is independent of the choice of U in the definition of the peak,
- It is $=0$ when Weyl vanishes at x_{0}
- It is $=0$ when U is radial
- It is $=0$ when $u_{\alpha}>0$ (since then, $U>0$ and is then radial wrt a point)
\Rightarrow Weyl ${ }_{g} \otimes B$ arises only when dealing with sign-changing u_{α} in the non-Icf setting

If $u_{\alpha}=B_{\alpha}+o(1)$ for a bubble $B=\left(B_{\alpha}\right)_{\alpha}$ where $P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha}$, then

$$
\left(\int_{\mathbb{R}^{n}}|U|^{2^{\star}-2} U d X\right) m_{P_{\infty}}\left(x_{0}\right)=0
$$

here, $m_{P_{\infty}}\left(x_{0}\right)$ is the mass of the limiting operator $P_{\infty}=\lim _{\alpha \rightarrow \infty} P_{\alpha}$,

If $u_{\alpha}=B_{\alpha}+o(1)$ for a bubble $B=\left(B_{\alpha}\right)_{\alpha}$ where $P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha}$, then

$$
\left(\int_{\mathbb{R}^{n}}|U|^{2^{\star}-2} U d X\right) m_{P_{\infty}}\left(x_{0}\right)=0
$$

here, $m_{P_{\infty}}\left(x_{0}\right)$ is the mass of the limiting operator $P_{\infty}=\lim _{\alpha \rightarrow \infty} P_{\alpha}$, that is

$$
G_{\infty}\left(x, x_{0}\right)=\frac{c_{n, k}}{d_{g}\left(x, x_{0}\right)^{n-2 k}}+m_{P_{\infty}}(x 0)+o(1) \text { as } x \rightarrow x_{0}
$$

where G_{∞} is the Green's function of P_{∞}, that is

$$
P_{\infty} G_{\infty}(\cdot, y)=\delta_{y} \text { weakly in } M
$$

If $u_{\alpha}=B_{\alpha}+o(1)$ for a bubble $B=\left(B_{\alpha}\right)_{\alpha}$ where $P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha}$, then

$$
\left(\int_{\mathbb{R}^{n}}|U|^{2^{\star}-2} U d X\right) m_{P_{\infty}}\left(x_{0}\right)=0
$$

here, $m_{P_{\infty}}\left(x_{0}\right)$ is the mass of the limiting operator $P_{\infty}=\lim _{\alpha \rightarrow \infty} P_{\alpha}$, that is

$$
G_{\infty}\left(x, x_{0}\right)=\frac{c_{n, k}}{d_{g}\left(x, x_{0}\right)^{n-2 k}}+m_{P_{\infty}}(x 0)+o(1) \text { as } x \rightarrow x_{0}
$$

where G_{∞} is the Green's function of P_{∞}, that is

$$
P_{\infty} G_{\infty}(\cdot, y)=\delta_{y} \text { weakly in } M
$$

What about $\int_{\mathbb{R}^{n}}|U|^{2^{\star}-2} U d X$?

If $u_{\alpha}=B_{\alpha}+o(1)$ for a bubble $B=\left(B_{\alpha}\right)_{\alpha}$ where $P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha}$, then

$$
\left(\int_{\mathbb{R}^{n}}|U|^{2^{\star}-2} U d X\right) m_{P_{\infty}}\left(x_{0}\right)=0
$$

here, $m_{P_{\infty}}\left(x_{0}\right)$ is the mass of the limiting operator $P_{\infty}=\lim _{\alpha \rightarrow \infty} P_{\alpha}$, that is

$$
G_{\infty}\left(x, x_{0}\right)=\frac{c_{n, k}}{d_{g}\left(x, x_{0}\right)^{n-2 k}}+m_{P_{\infty}}(x 0)+o(1) \text { as } x \rightarrow x_{0},
$$

where G_{∞} is the Green's function of P_{∞}, that is

$$
P_{\infty} G_{\infty}(\cdot, y)=\delta_{y} \text { weakly in } M
$$

What about $\int_{\mathbb{R}^{n}}|U|^{2^{\star}-2} U d X$? Can it vanish? It is a possibility... Indeed

$$
\lim _{|X| \rightarrow \infty}|X|^{n-2 k} U(X)=C_{n, k} \int_{\mathbb{R}^{n}}|U|^{2^{\star}-2} U d X \text { for some } C_{n, k}>0
$$

therefore

If $u_{\alpha}=B_{\alpha}+o(1)$ for a bubble $B=\left(B_{\alpha}\right)_{\alpha}$ where $P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha}$, then

$$
\left(\int_{\mathbb{R}^{n}}|U|^{2^{\star}-2} U d X\right) m_{P_{\infty}}\left(x_{0}\right)=0
$$

here, $m_{P_{\infty}}\left(x_{0}\right)$ is the mass of the limiting operator $P_{\infty}=\lim _{\alpha \rightarrow \infty} P_{\alpha}$, that is

$$
G_{\infty}\left(x, x_{0}\right)=\frac{c_{n, k}}{d_{g}\left(x, x_{0}\right)^{n-2 k}}+m_{P_{\infty}}(x 0)+o(1) \text { as } x \rightarrow x_{0},
$$

where G_{∞} is the Green's function of P_{∞}, that is

$$
P_{\infty} G_{\infty}(\cdot, y)=\delta_{y} \text { weakly in } M
$$

What about $\int_{\mathbb{R}^{n}}|U|^{2^{\star}-2} U d X$? Can it vanish? It is a possibility... Indeed

$$
\lim _{|X| \rightarrow \infty}|X|^{n-2 k} U(X)=C_{n, k} \int_{\mathbb{R}^{n}}|U|^{2^{\star}-2} U d X \text { for some } C_{n, k}>0
$$

therefore

$$
\int_{\mathbb{R}^{n}}|U|^{2^{\star}-2} U d X=0 \Leftrightarrow U(x)=o\left(|x|^{2 k-n}\right) \text { as }|x| \rightarrow \infty
$$

This is possible only for some sign-changing U, but not all of them.

Theorem (R., 2023)

$$
\left\{\begin{array}{c}
P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{\star}-2 u_{\alpha} \text { in } M \\
+ \text { one peak Blow-up }
\end{array}\right\} \Rightarrow
$$

$$
\left\{\begin{array}{cc}
\text { Weyl }_{g} \otimes B+\int_{\mathbb{R}^{n}}\left(A_{\infty}-A_{G J M S}\right)_{x_{0}}\left(\nabla^{k-1} U, \nabla^{k-1} U\right) d X=0 & \text { if } n>2 k+2 \\
\left(\int_{\mathbb{R}^{n}}|U|^{2^{\star}-2} U d X\right) m_{P_{\infty}}\left(x_{0}\right)=0 & \text { if } n=2 k+1
\end{array}\right\}
$$

Theorem (R., 2023)

$$
\begin{gathered}
\left\{\begin{array}{c}
P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M \\
+ \text { one peak Blow-up }
\end{array}\right\} \Rightarrow \\
\left\{\begin{array}{cc}
\text { Weyl }_{g} \otimes B+\int_{\mathbb{R}^{n}}\left(A_{\infty}-A_{G J M S}\right)_{x_{0}}\left(\nabla^{k-1} U, \nabla^{k-1} U\right) d X=0 & \text { if } n>2 k+2 \\
\left(\int_{\mathbb{R}^{n}}|U|^{2^{\star}-2} U d X\right) m_{P_{\infty}}\left(x_{0}\right)=0 & \text { if } n=2 k+1
\end{array}\right\}
\end{gathered}
$$

- For $\mathbf{k}=\mathbf{1}, u_{\alpha}>0$, this theorem was proved by Druet, after earlier contributions by Z.-C.Han, Hebey-Vaugon.

Theorem (R., 2023)

$$
\begin{gathered}
\left\{\begin{array}{c}
P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M \\
+ \text { one peak Blow-up }
\end{array}\right\} \Rightarrow \\
\left\{\begin{array}{cc}
\text { Weyl }_{g} \otimes B+\int_{\mathbb{R}^{n}}\left(A_{\infty}-A_{G J M S}\right)_{x_{0}}\left(\nabla^{k-1} U, \nabla^{k-1} U\right) d X=0 & \text { if } n>2 k+2 \\
\left(\int_{\mathbb{R}^{n}}|U|^{2^{\star}-2} U d X\right) m_{P_{\infty}}\left(x_{0}\right)=0 & \text { if } n=2 k+1
\end{array}\right\}
\end{gathered}
$$

- For $\mathbf{k}=\mathbf{1}, u_{\alpha}>0$, this theorem was proved by Druet, after earlier contributions by Z.-C.Han, Hebey-Vaugon.
- For 4th order operator $\left(P=\Delta_{g}^{2}+l o t\right)$ and:
- Hebey-R.-Wen: partial results when $P=\left(-\Delta_{g}+l o t\right) \circ\left(-\Delta_{g}+l o t\right)$ and lcf
- Gursky-Malchiodi: for the geometric operator $P=$ Paneitz, $(P u \geq 0$ in $M \Rightarrow u \geq 0)$. No local version.
- Li-Xiong: compactness when $P=$ Paneitz, $u_{\alpha}>0$ and Green's function is >0.

Theorem (R., 2023)

$$
\begin{gathered}
\left\{\begin{array}{c}
P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M \\
\text { + one peak Blow-up }
\end{array}\right\} \Rightarrow \\
\left\{\begin{array}{cc}
\text { Weyl }_{g} \otimes B+\int_{\mathbb{R}^{n}}\left(A_{\infty}-A_{G J M S}\right)_{x_{0}}\left(\nabla^{k-1} U, \nabla^{k-1} U\right) d X=0 & \text { if } n>2 k+2 \\
\left(\int_{\mathbb{R}^{n}}|U|^{2^{\star}-2} U d X\right) m_{P_{\infty}}\left(x_{0}\right)=0 & \text { if } n=2 k+1
\end{array}\right\}
\end{gathered}
$$

- For $\mathbf{k}=\mathbf{1}, u_{\alpha}>0$, this theorem was proved by Druet, after earlier contributions by Z.-C.Han, Hebey-Vaugon.
- For 4th order operator $\left(P=\Delta_{g}^{2}+l o t\right)$ and:
- Hebey-R.-Wen: partial results when $P=\left(-\Delta_{g}+l o t\right) \circ\left(-\Delta_{g}+l o t\right)$ and lcf
- Gursky-Malchiodi: for the geometric operator $P=$ Paneitz, $(P u \geq 0$ in $M \Rightarrow u \geq 0)$. No local version.
- Li-Xiong: compactness when $P=$ Paneitz, $u_{\alpha}>0$ and Green's function is >0.

The key is to get the pointwise control.

Theorem (R., 2022)

$$
\left\{\begin{array}{c}
P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M \\
+ \text { one peak Blow-up }
\end{array}\right\} \Rightarrow\left|u_{\alpha}(x)\right| \leq C\left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2}+d_{g}\left(x, x_{\alpha}\right)^{2}}\right)^{\frac{n-2 k}{2}}
$$

where $\mu_{\alpha}^{-\frac{n-2 k}{2}}=\left|u_{\alpha}\left(x_{\alpha}\right)\right|=\sup _{M}\left|u_{\alpha}\right|$.

Theorem (R., 2022)

$$
\left\{\begin{array}{c}
P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M \\
+ \text { one peak Blow-up }
\end{array}\right\} \Rightarrow\left|u_{\alpha}(x)\right| \leq C\left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2}+d_{g}\left(x, x_{\alpha}\right)^{2}}\right)^{\frac{n-2 k}{2}}
$$

where $\mu_{\alpha}^{-\frac{n-2 k}{2}}=\left|u_{\alpha}\left(x_{\alpha}\right)\right|=\sup _{M}\left|u_{\alpha}\right|$.

- For $\mathbf{k}=\mathbf{1}, u_{\alpha}>0$, this theorem was proved by Druet-R. after earlier contributions by Z.-C.Han, Hebey-Vaugon.

Theorem (R., 2022)

$$
\left\{\begin{array}{c}
P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M \\
+ \text { one peak Blow-up }
\end{array}\right\} \Rightarrow\left|u_{\alpha}(x)\right| \leq C\left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2}+d_{g}\left(x, x_{\alpha}\right)^{2}}\right)^{\frac{n-2 k}{2}}
$$

$$
\text { where } \mu_{\alpha}^{-\frac{n-2 k}{2}}=\left|u_{\alpha}\left(x_{\alpha}\right)\right|=\sup _{M}\left|u_{\alpha}\right| \text {. }
$$

- For $\mathbf{k}=\mathbf{1}, u_{\alpha}>0$, this theorem was proved by Druet-R. after earlier contributions by Z.-C.Han, Hebey-Vaugon.
- The proofs are specific to 2 nd order elliptic operators via the maximum principle (essentially). Not valid for $k>1$!!

Theorem (R., 2022)

$$
\left\{\begin{array}{c}
P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M \\
+ \text { one peak Blow-up }
\end{array}\right\} \Rightarrow\left|u_{\alpha}(x)\right| \leq C\left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2}+d_{g}\left(x, x_{\alpha}\right)^{2}}\right)^{\frac{n-2 k}{2}}
$$

where $\mu_{\alpha}^{-\frac{n-2 k}{2}}=\left|u_{\alpha}\left(x_{\alpha}\right)\right|=\sup _{M}\left|u_{\alpha}\right|$.

- For $\mathbf{k}=\mathbf{1}, u_{\alpha}>0$, this theorem was proved by Druet-R. after earlier contributions by Z.-C.Han, Hebey-Vaugon.
- The proofs are specific to 2 nd order elliptic operators via the maximum principle (essentially). Not valid for $k>1$!!
- For 4th order operator $\left(P=\Delta_{g}^{2}+l o t\right)$:
- Hebey-R.-Wen: partial control when $P=\left(\Delta_{g}+l o t\right) \circ\left(\Delta_{g}+l o t\right)$
- Li-Xiong: pointwise control for $P=$ Paneitz, $u_{\alpha}>0$ and Green's function is >0.

Theorem (R., 2022)

$$
\left\{\begin{array}{c}
P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M \\
+ \text { one peak Blow-up }
\end{array}\right\} \Rightarrow\left|u_{\alpha}(x)\right| \leq C\left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2}+d_{g}\left(x, x_{\alpha}\right)^{2}}\right)^{\frac{n-2 k}{2}}
$$

$$
\text { where } \mu_{\alpha}^{-\frac{n-2 k}{2}}=\left|u_{\alpha}\left(x_{\alpha}\right)\right|=\sup _{M}\left|u_{\alpha}\right| \text {. }
$$

- For $\mathbf{k}=\mathbf{1}, u_{\alpha}>0$, this theorem was proved by Druet-R. after earlier contributions by Z.-C.Han, Hebey-Vaugon.
- The proofs are specific to 2 nd order elliptic operators via the maximum principle (essentially). Not valid for $k>1$!!
- For 4th order operator $\left(P=\Delta_{g}^{2}+l o t\right)$:
- Hebey-R.-Wen: partial control when $P=\left(\Delta_{g}+l o t\right) \circ\left(\Delta_{g}+l o t\right)$
- Li-Xiong: pointwise control for $P=$ Paneitz, $u_{\alpha}>0$ and Green's function is >0.
- Here: we want a method in analysis that does not require geometric assumptions or sign assumptions... because it simply more natural.
- The main difficulty: how to bypass the maximum principle?

Proof. Step 1: rescaling

$$
\Delta_{\xi}^{k} u_{\alpha}+\ldots=u_{\alpha}^{2^{\star}-1}, u_{\alpha}>0 \text { (for simplification) }
$$

$$
\Delta_{\xi}^{k} u_{\alpha}+\ldots=u_{\alpha}^{2^{\star}-1}, u_{\alpha}>0(\text { for simplification })
$$

- Set $\mu_{\alpha}^{-\frac{n-2 k}{2}}=\left|u_{\alpha}\left(x_{\alpha}\right)\right|=\sup _{M}\left|u_{\alpha}\right|$ and define (Euclidean for simplicity)

$$
\tilde{u}_{\alpha}(X):=\mu_{\alpha}^{\frac{n-2 k}{2}} u_{\alpha}\left(x_{\alpha}+\mu_{\alpha} X\right) \text { for } X \in \mathbb{R}^{n}
$$

$$
\Delta_{\xi}^{k} u_{\alpha}+\ldots=u_{\alpha}^{2^{\star}-1}, u_{\alpha}>0(\text { for simplification })
$$

- Set $\mu_{\alpha}^{-\frac{n-2 k}{2}}=\left|u_{\alpha}\left(x_{\alpha}\right)\right|=\sup _{M}\left|u_{\alpha}\right|$ and define (Euclidean for simplicity)

$$
\tilde{u}_{\alpha}(X):=\mu_{\alpha}^{\frac{n-2 k}{2}} u_{\alpha}\left(x_{\alpha}+\mu_{\alpha} X\right) \text { for } X \in \mathbb{R}^{n}
$$

- The pde rewrites

$$
\left\{\begin{array}{c}
\Delta_{\xi}^{k} \tilde{u}_{\alpha}+\mu_{\alpha} \cdot(\ldots)=\tilde{u}_{\alpha}^{2^{\star}-1} \text { in } \mathbb{R}^{n} \\
0<\tilde{u}_{\alpha} \leq \tilde{u}_{\alpha}(0)=1
\end{array}\right\}
$$

$$
\Delta_{\xi}^{k} u_{\alpha}+\ldots=u_{\alpha}^{2^{\star}-1}, u_{\alpha}>0 \text { (for simplification) }
$$

- Set $\mu_{\alpha}^{-\frac{n-2 k}{2}}=\left|u_{\alpha}\left(x_{\alpha}\right)\right|=\sup _{M}\left|u_{\alpha}\right|$ and define (Euclidean for simplicity)

$$
\tilde{u}_{\alpha}(X):=\mu_{\alpha}^{\frac{n-2 k}{2}} u_{\alpha}\left(x_{\alpha}+\mu_{\alpha} X\right) \text { for } X \in \mathbb{R}^{n}
$$

- The pde rewrites

$$
\left\{\begin{array}{c}
\Delta_{\xi}^{k} \tilde{u}_{\alpha}+\mu_{\alpha} \cdot(\ldots)=\tilde{u}_{\alpha}^{2^{\star}-1} \text { in } \mathbb{R}^{n} \\
0<\tilde{u}_{\alpha} \leq \tilde{u}_{\alpha}(0)=1
\end{array}\right\}
$$

- Elliptic regularity:

$$
\tilde{u}_{\alpha} \rightarrow U \text { in } C_{l o c}^{2 k}\left(\mathbb{R}^{n}\right),\left\{\begin{array}{c}
\Delta_{\xi}^{k} U=U^{2^{\star}-1} \text { in } \mathbb{R}^{n} \\
0 \leq U \leq U(0)=1
\end{array}\right\} \Rightarrow U(X)=\left(\frac{1}{1+\alpha_{n, k}|x|^{2}}\right)^{\frac{n-2 k}{2}}
$$

$$
\Delta_{\xi}^{k} u_{\alpha}+\ldots=u_{\alpha}^{2^{\star}-1}, u_{\alpha}>0 \text { (for simplification) }
$$

- Set $\mu_{\alpha}^{-\frac{n-2 k}{2}}=\left|u_{\alpha}\left(x_{\alpha}\right)\right|=\sup _{M}\left|u_{\alpha}\right|$ and define (Euclidean for simplicity)

$$
\tilde{u}_{\alpha}(X):=\mu_{\alpha}^{\frac{n-2 k}{2}} u_{\alpha}\left(x_{\alpha}+\mu_{\alpha} X\right) \text { for } X \in \mathbb{R}^{n}
$$

- The pde rewrites

$$
\left\{\begin{array}{c}
\Delta_{\xi}^{k} \tilde{u}_{\alpha}+\mu_{\alpha} \cdot(\ldots)=\tilde{u}_{\alpha}^{2^{\star}-1} \text { in } \mathbb{R}^{n} \\
0<\tilde{u}_{\alpha} \leq \tilde{u}_{\alpha}(0)=1
\end{array}\right\}
$$

- Elliptic regularity:

$$
\tilde{u}_{\alpha} \rightarrow U \text { in } C_{l o c}^{2 k}\left(\mathbb{R}^{n}\right),\left\{\begin{array}{c}
\Delta_{\xi}^{k} U=U^{2^{\star}-1} \text { in } \mathbb{R}^{n} \\
0 \leq U \leq U(0)=1
\end{array}\right\} \Rightarrow U(X)=\left(\frac{1}{1+\alpha_{n, k}|x|^{2}}\right)^{\frac{n-2 k}{2}}
$$

- Scale back:

$$
u_{\alpha}(x) \simeq\left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2}+d_{g}\left(x, x_{\alpha}\right)^{2}}\right)^{\frac{n-2 k}{2}} \text { in } B\left(x_{\alpha}, R \mu_{\alpha}\right)
$$

$$
\Delta_{\xi}^{k} u_{\alpha}+\ldots=u_{\alpha}^{2^{\star}-1}, u_{\alpha}>0 \text { (for simplification) }
$$

- Set $\mu_{\alpha}^{-\frac{n-2 k}{2}}=\left|u_{\alpha}\left(x_{\alpha}\right)\right|=\sup _{M}\left|u_{\alpha}\right|$ and define (Euclidean for simplicity)

$$
\tilde{u}_{\alpha}(X):=\mu_{\alpha}^{\frac{n-2 k}{2}} u_{\alpha}\left(x_{\alpha}+\mu_{\alpha} X\right) \text { for } X \in \mathbb{R}^{n}
$$

- The pde rewrites

$$
\left\{\begin{array}{c}
\Delta_{\xi}^{k} \tilde{u}_{\alpha}+\mu_{\alpha} \cdot(\ldots)=\tilde{u}_{\alpha}^{2^{\star}-1} \text { in } \mathbb{R}^{n} \\
0<\tilde{u}_{\alpha} \leq \tilde{u}_{\alpha}(0)=1
\end{array}\right\}
$$

- Elliptic regularity:

$$
\tilde{u}_{\alpha} \rightarrow U \text { in } C_{l o c}^{2 k}\left(\mathbb{R}^{n}\right),\left\{\begin{array}{c}
\Delta_{\xi}^{k} U=U^{2^{\star}-1} \text { in } \mathbb{R}^{n} \\
0 \leq U \leq U(0)=1
\end{array}\right\} \Rightarrow U(X)=\left(\frac{1}{1+\alpha_{n, k}|x|^{2}}\right)^{\frac{n-2 k}{2}}
$$

- Scale back:

$$
u_{\alpha}(x) \simeq\left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2}+d_{g}\left(x, x_{\alpha}\right)^{2}}\right)^{\frac{n-2 k}{2}} \text { in } B\left(x_{\alpha}, R \mu_{\alpha}\right)
$$

$$
\Delta_{\xi}^{k} u_{\alpha}+\ldots=u_{\alpha}^{2^{\star}-1}, u_{\alpha}>0 \text { (for simplification) }
$$

- Set $\mu_{\alpha}^{-\frac{n-2 k}{2}}=\left|u_{\alpha}\left(x_{\alpha}\right)\right|=\sup _{M}\left|u_{\alpha}\right|$ and define (Euclidean for simplicity)

$$
\tilde{u}_{\alpha}(X):=\mu_{\alpha}^{\frac{n-2 k}{2}} u_{\alpha}\left(x_{\alpha}+\mu_{\alpha} X\right) \text { for } X \in \mathbb{R}^{n}
$$

- The pde rewrites

$$
\left\{\begin{array}{c}
\Delta_{\xi}^{k} \tilde{u}_{\alpha}+\mu_{\alpha} \cdot(\ldots)=\tilde{u}_{\alpha}^{2^{\star}-1} \text { in } \mathbb{R}^{n} \\
0<\tilde{u}_{\alpha} \leq \tilde{u}_{\alpha}(0)=1
\end{array}\right\}
$$

- Elliptic regularity:

$$
\tilde{u}_{\alpha} \rightarrow U \text { in } C_{l o c}^{2 k}\left(\mathbb{R}^{n}\right),\left\{\begin{array}{c}
\Delta_{\xi}^{k} U=U^{2^{\star}-1} \text { in } \mathbb{R}^{n} \\
0 \leq U \leq U(0)=1
\end{array}\right\} \Rightarrow U(X)=\left(\frac{1}{1+\alpha_{n, k}|x|^{2}}\right)^{\frac{n-2 k}{2}}
$$

- Scale back:

$$
u_{\alpha}(x) \simeq\left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2}+d_{g}\left(x, x_{\alpha}\right)^{2}}\right)^{\frac{n-2 k}{2}} \text { in } B\left(x_{\alpha}, R \mu_{\alpha}\right)
$$

Objective: We want (\star) on all the manifold M

Proof. Step 2: the final argument in 1 page!

- Write $P_{\alpha} u_{\alpha}=u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$
P_{\alpha} u_{\alpha}=V_{\alpha} u_{\alpha} \text { with } V_{\alpha}=u_{\alpha}^{2^{\star}-2}
$$

Proof. Step 2: the final argument in 1 page!

- Write $P_{\alpha} u_{\alpha}=u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$
P_{\alpha} u_{\alpha}=V_{\alpha} u_{\alpha} \text { with } V_{\alpha}=u_{\alpha}^{2^{\star}-2}
$$

- Let G_{α} be the Green's function for $P_{\alpha}-V_{\alpha}$
- Write $P_{\alpha} u_{\alpha}=u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$
P_{\alpha} u_{\alpha}=V_{\alpha} u_{\alpha} \text { with } V_{\alpha}=u_{\alpha}^{2^{\star}-2}
$$

- Let G_{α} be the Green's function for $P_{\alpha}-V_{\alpha}$
- For $x \in M$ s.t $d\left(x, x_{\alpha}\right)>2 R \mu_{\alpha}$, write Green's representation on $M-B\left(x_{\alpha}, R \mu_{\alpha}\right)$:

$$
u_{\alpha}(x)=\int_{\partial B\left(x_{\alpha}, R \mu_{\alpha}\right)} \sum_{i<2 k} \nabla^{i} G_{\alpha}(x, \cdot) \star \nabla^{2 k-1-i} u_{\alpha} d v_{g}
$$

- Write $P_{\alpha} u_{\alpha}=u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$
P_{\alpha} u_{\alpha}=V_{\alpha} u_{\alpha} \text { with } V_{\alpha}=u_{\alpha}^{2^{\star}-2}
$$

- Let G_{α} be the Green's function for $P_{\alpha}-V_{\alpha}$
- For $x \in M$ s.t $d\left(x, x_{\alpha}\right)>2 R \mu_{\alpha}$, write Green's representation on $M-B\left(x_{\alpha}, R \mu_{\alpha}\right)$:

$$
u_{\alpha}(x)=\int_{\partial B\left(x_{\alpha}, R \mu_{\alpha}\right)} \sum_{i<2 k} \nabla^{i} G_{\alpha}(x, \cdot) \star \nabla^{2 k-1-i} u_{\alpha} d v_{g}
$$

- We know u_{α} on the boundary: $u_{\alpha}(z) \simeq \mu_{\alpha}^{-\frac{n-2 k}{2}}$, similar for derivatives.
- Write $P_{\alpha} u_{\alpha}=u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$
P_{\alpha} u_{\alpha}=V_{\alpha} u_{\alpha} \text { with } V_{\alpha}=u_{\alpha}^{2^{\star}-2}
$$

- Let G_{α} be the Green's function for $P_{\alpha}-V_{\alpha}$
- For $x \in M$ s.t $d\left(x, x_{\alpha}\right)>2 R \mu_{\alpha}$, write Green's representation on $M-B\left(x_{\alpha}, R \mu_{\alpha}\right)$:

$$
u_{\alpha}(x)=\int_{\partial B\left(x_{\alpha}, R \mu_{\alpha}\right)} \sum_{i<2 k} \nabla^{i} G_{\alpha}(x, \cdot) \star \nabla^{2 k-1-i} u_{\alpha} d v_{g}
$$

- We know u_{α} on the boundary: $u_{\alpha}(z) \simeq \mu_{\alpha}^{-\frac{n-2 k}{2}}$, similar for derivatives.
- If G_{α} has the expected behavior

$$
\left|G_{\alpha}(x, z)\right| \simeq d_{g}(x, z)^{2 k-n} \simeq d_{g}\left(x, x_{\alpha}\right)^{2 k-n} \text { for } z \in \partial B\left(x_{\alpha}, R \mu_{\alpha}\right)
$$

- Write $P_{\alpha} u_{\alpha}=u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$
P_{\alpha} u_{\alpha}=V_{\alpha} u_{\alpha} \text { with } V_{\alpha}=u_{\alpha}^{2^{\star}-2}
$$

- Let G_{α} be the Green's function for $P_{\alpha}-V_{\alpha}$
- For $x \in M$ s.t $d\left(x, x_{\alpha}\right)>2 R \mu_{\alpha}$, write Green's representation on $M-B\left(x_{\alpha}, R \mu_{\alpha}\right)$:

$$
u_{\alpha}(x)=\int_{\partial B\left(x_{\alpha}, R \mu_{\alpha}\right)} \sum_{i<2 k} \nabla^{i} G_{\alpha}(x, \cdot) \star \nabla^{2 k-1-i} u_{\alpha} d v_{g}
$$

- We know u_{α} on the boundary: $u_{\alpha}(z) \simeq \mu_{\alpha}^{-\frac{n-2 k}{2}}$, similar for derivatives.
- If G_{α} has the expected behavior

$$
\left|G_{\alpha}(x, z)\right| \simeq d_{g}(x, z)^{2 k-n} \simeq d_{g}\left(x, x_{\alpha}\right)^{2 k-n} \text { for } z \in \partial B\left(x_{\alpha}, R \mu_{\alpha}\right)
$$

- Then

$$
\left|u_{\alpha}(x)\right| \leq C \sum_{i<2 k} \mu_{\alpha}^{n-1} d_{g}\left(x, x_{\alpha}\right)^{2 k-n-i} \mu_{\alpha}^{-\frac{n-2 k}{2}-(2 k-1-i)} \leq C \frac{\mu_{\alpha}^{\frac{n-2 k}{2}}}{d_{g}\left(x, x_{\alpha}\right)^{n-2 k}}
$$

- Write $P_{\alpha} u_{\alpha}=u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$
P_{\alpha} u_{\alpha}=V_{\alpha} u_{\alpha} \text { with } V_{\alpha}=u_{\alpha}^{2^{\star}-2}
$$

- Let G_{α} be the Green's function for $P_{\alpha}-V_{\alpha}$
- For $x \in M$ s.t $d\left(x, x_{\alpha}\right)>2 R \mu_{\alpha}$, write Green's representation on $M-B\left(x_{\alpha}, R \mu_{\alpha}\right)$:

$$
u_{\alpha}(x)=\int_{\partial B\left(x_{\alpha}, R \mu_{\alpha}\right)} \sum_{i<2 k} \nabla^{i} G_{\alpha}(x, \cdot) \star \nabla^{2 k-1-i} u_{\alpha} d v_{g}
$$

- We know u_{α} on the boundary: $u_{\alpha}(z) \simeq \mu_{\alpha}^{-\frac{n-2 k}{2}}$, similar for derivatives.
- If G_{α} has the expected behavior

$$
\left|G_{\alpha}(x, z)\right| \simeq d_{g}(x, z)^{2 k-n} \simeq d_{g}\left(x, x_{\alpha}\right)^{2 k-n} \text { for } z \in \partial B\left(x_{\alpha}, R \mu_{\alpha}\right)
$$

- Then

$$
\left|u_{\alpha}(x)\right| \leq C \sum_{i<2 k} \mu_{\alpha}^{n-1} d_{g}\left(x, x_{\alpha}\right)^{2 k-n-i} \mu_{\alpha}^{-\frac{n-2 k}{2}-(2 k-1-i)} \leq C \frac{\mu_{\alpha}^{\frac{n-2 k}{2}}}{d_{g}\left(x, x_{\alpha}\right)^{n-2 k}}
$$

and then

$$
u_{\alpha}(x) \leq C\left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2}+d_{g}\left(x, x_{\alpha}\right)^{2}}\right)^{\frac{n-2 k}{2}} \text { in } M-B\left(x_{\alpha}, 2 R \mu_{\alpha}\right): \text { DONE! }
$$

- Write $P_{\alpha} u_{\alpha}=u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$
P_{\alpha} u_{\alpha}=V_{\alpha} u_{\alpha} \text { with } V_{\alpha}=u_{\alpha}^{2^{\star}-2}
$$

- Let G_{α} be the Green's function for $P_{\alpha}-V_{\alpha}$
- For $x \in M$ s.t $d\left(x, x_{\alpha}\right)>2 R \mu_{\alpha}$, write Green's representation on $M-B\left(x_{\alpha}, R \mu_{\alpha}\right)$:

$$
u_{\alpha}(x)=\int_{\partial B\left(x_{\alpha}, R \mu_{\alpha}\right)} \sum_{i<2 k} \nabla^{i} G_{\alpha}(x, \cdot) \star \nabla^{2 k-1-i} u_{\alpha} d v_{g}
$$

- We know u_{α} on the boundary: $u_{\alpha}(z) \simeq \mu_{\alpha}^{-\frac{n-2 k}{2}}$, similar for derivatives.
- If G_{α} has the expected behavior

$$
\left|G_{\alpha}(x, z)\right| \simeq d_{g}(x, z)^{2 k-n} \simeq d_{g}\left(x, x_{\alpha}\right)^{2 k-n} \text { for } z \in \partial B\left(x_{\alpha}, R \mu_{\alpha}\right)
$$

- Then

$$
\left|u_{\alpha}(x)\right| \leq C \sum_{i<2 k} \mu_{\alpha}^{n-1} d_{g}\left(x, x_{\alpha}\right)^{2 k-n-i} \mu_{\alpha}^{-\frac{n-2 k}{2}-(2 k-1-i)} \leq C \frac{\mu_{\alpha}^{\frac{n-2 k}{2}}}{d_{g}\left(x, x_{\alpha}\right)^{n-2 k}}
$$

and then

$$
u_{\alpha}(x) \leq C\left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2}+d_{g}\left(x, x_{\alpha}\right)^{2}}\right)^{\frac{n-2 k}{2}} \text { in } M-B\left(x_{\alpha}, 2 R \mu_{\alpha}\right): \text { DONE! }
$$

Except that this does not work...

- Write $P_{\alpha} u_{\alpha}=u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$
P_{\alpha} u_{\alpha}=V_{\alpha} u_{\alpha} \text { with } V_{\alpha}=u_{\alpha}^{2^{\star}-2}
$$

- Let G_{α} be the Green's function for $P_{\alpha}-V_{\alpha}$
- For $x \in M$ s.t. $d\left(x, x_{\alpha}\right)>2 R \mu_{\alpha}$, write Green's representation:

$$
u_{\alpha}(x)=\int_{\partial B\left(x_{\alpha}, R \mu_{\alpha}\right)} \sum_{i<2 k} \nabla^{i} G_{\alpha}(x, \cdot) \star \nabla^{2 k-1-i} u_{\alpha} d v_{g}
$$

- We know u_{α} on the boundary: $u_{\alpha}(z) \simeq \mu_{\alpha}^{-\frac{n-2 k}{2}}$, similar for derivatives
- If G_{α} has the expected behavior:
- Write $P_{\alpha} u_{\alpha}=u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$
P_{\alpha} u_{\alpha}=V_{\alpha} u_{\alpha} \text { with } V_{\alpha}=u_{\alpha}^{2^{\star}-2}
$$

- Let G_{α} be the Green's function for $P_{\alpha}-V_{\alpha}$
- For $x \in M$ s.t. $d\left(x, x_{\alpha}\right)>2 R \mu_{\alpha}$, write Green's representation:

$$
u_{\alpha}(x)=\int_{\partial B\left(x_{\alpha}, R \mu_{\alpha}\right)} \sum_{i<2 k} \nabla^{i} G_{\alpha}(x, \cdot) \star \nabla^{2 k-1-i} u_{\alpha} d v_{g}
$$

- We know u_{α} on the boundary: $u_{\alpha}(z) \simeq \mu_{\alpha}^{-\frac{n-2 k}{2}}$, similar for derivatives
- If G_{α} has the expected behavior:NO its doesn't!!!

$$
\left|G_{\alpha}(x, z)\right| \nsucceq d_{g}(x, z)^{2 k-n} \simeq d_{g}\left(x, x_{\alpha}\right)^{2 k-n} \text { for } z \in \partial B\left(x_{\alpha}, R \mu_{\alpha}\right)
$$

- Write $P_{\alpha} u_{\alpha}=u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$
P_{\alpha} u_{\alpha}=V_{\alpha} u_{\alpha} \text { with } V_{\alpha}=u_{\alpha}^{2^{\star}-2}
$$

- Let G_{α} be the Green's function for $P_{\alpha}-V_{\alpha}$
- For $x \in M$ s.t. $d\left(x, x_{\alpha}\right)>2 R \mu_{\alpha}$, write Green's representation:

$$
u_{\alpha}(x)=\int_{\partial B\left(x_{\alpha}, R \mu_{\alpha}\right)} \sum_{i<2 k} \nabla^{i} G_{\alpha}(x, \cdot) \star \nabla^{2 k-1-i} u_{\alpha} d v_{g}
$$

- We know u_{α} on the boundary: $u_{\alpha}(z) \simeq \mu_{\alpha}^{-\frac{n-2 k}{2}}$, similar for derivatives
- If G_{α} has the expected behavior:NO its doesn't!!!

$$
\left|G_{\alpha}(x, z)\right| \nsucceq d_{g}(x, z)^{2 k-n} \simeq d_{g}\left(x, x_{\alpha}\right)^{2 k-n} \text { for } z \in \partial B\left(x_{\alpha}, R \mu_{\alpha}\right)
$$

SO, we must get a reasonable control for the Green's function of

$$
P_{\alpha}-V_{\alpha}=P_{\alpha}-u_{\alpha}^{2^{\star}-2}
$$

with a potential that is blowing-up.

- Write $P_{\alpha} u_{\alpha}=u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$
P_{\alpha} u_{\alpha}=V_{\alpha} u_{\alpha} \text { with } V_{\alpha}=u_{\alpha}^{2^{\star}-2}
$$

- Let G_{α} be the Green's function for $P_{\alpha}-V_{\alpha}$
- For $x \in M$ s.t. $d\left(x, x_{\alpha}\right)>2 R \mu_{\alpha}$, write Green's representation:

$$
u_{\alpha}(x)=\int_{\partial B\left(x_{\alpha}, R \mu_{\alpha}\right)} \sum_{i<2 k} \nabla^{i} G_{\alpha}(x, \cdot) \star \nabla^{2 k-1-i} u_{\alpha} d v_{g}
$$

- We know u_{α} on the boundary: $u_{\alpha}(z) \simeq \mu_{\alpha}^{-\frac{n-2 k}{2}}$, similar for derivatives
- If G_{α} has the expected behavior:NO its doesn't!!!

$$
\left|G_{\alpha}(x, z)\right| \nsucceq d_{g}(x, z)^{2 k-n} \simeq d_{g}\left(x, x_{\alpha}\right)^{2 k-n} \text { for } z \in \partial B\left(x_{\alpha}, R \mu_{\alpha}\right)
$$

SO, we must get a reasonable control for the Green's function of

$$
P_{\alpha}-V_{\alpha}=P_{\alpha}-u_{\alpha}^{2^{\star}-2}
$$

with a potential that is blowing-up.Fortunately, this is a very particular potential.

Intermission: $V_{\alpha}=u_{\alpha}^{2^{\star}-2}$ is a Hardy-potential
Let us go back to the invariance. A paramount quantity here is

$$
w_{\alpha}(x):=d_{g}\left(x, x_{\alpha}\right)^{\frac{n-2 k}{2}} u_{\alpha}(x)
$$

Intermission: $V_{\alpha}=u_{\alpha}^{2^{\star}-2}$ is a Hardy-potential
Let us go back to the invariance. A paramount quantity here is

$$
w_{\alpha}(x):=d_{g}\left(x, x_{\alpha}\right)^{\frac{n-2 k}{2}} u_{\alpha}(x)
$$

originating in Schoen-Zhang.
Why? For a function $U: \mathbb{R}^{n} \rightarrow \mathbb{R}$, recall $U_{\mu, x_{0}}(x):=\mu^{-\frac{n-2 k}{2}} U\left(\frac{x-x_{0}}{\mu}\right)$.

Let us go back to the invariance. A paramount quantity here is

$$
w_{\alpha}(x):=d_{g}\left(x, x_{\alpha}\right)^{\frac{n-2 k}{2}} u_{\alpha}(x)
$$

originating in Schoen-Zhang.
Why? For a function $U: \mathbb{R}^{n} \rightarrow \mathbb{R}$, recall $U_{\mu, x_{0}}(x):=\mu^{-\frac{n-2 k}{2}} U\left(\frac{x-x_{0}}{\mu}\right)$. Then $\left|x-x_{0}\right|^{\frac{n-2 k}{2}}\left|U_{\mu, x_{0}}(x)\right|=|X|^{\frac{n-2 k}{2}}|U(X)|$ with $x=x_{0}+\mu_{\alpha} X$

Let us go back to the invariance. A paramount quantity here is

$$
w_{\alpha}(x):=d_{g}\left(x, x_{\alpha}\right)^{\frac{n-2 k}{2}} u_{\alpha}(x)
$$

originating in Schoen-Zhang.
Why? For a function $U: \mathbb{R}^{n} \rightarrow \mathbb{R}$, recall $U_{\mu, x_{0}}(x):=\mu^{-\frac{n-2 k}{2}} U\left(\frac{x-x_{0}}{\mu}\right)$. Then

$$
\begin{aligned}
\left|x-x_{0}\right|^{\frac{n-2 k}{2}}\left|U_{\mu, x_{0}}(x)\right| & =|X|^{\frac{n-2 k}{2}}|U(X)| \text { with } x=x_{0}+\mu_{\alpha} X \\
& =C\left(\frac{|X|}{1+|X|^{2}}\right)^{\frac{n-2 k}{2}}:
\end{aligned}
$$

Let us go back to the invariance. A paramount quantity here is

$$
w_{\alpha}(x):=d_{g}\left(x, x_{\alpha}\right)^{\frac{n-2 k}{2}} u_{\alpha}(x)
$$

originating in Schoen-Zhang.
Why? For a function $U: \mathbb{R}^{n} \rightarrow \mathbb{R}$, recall $U_{\mu, x_{0}}(x):=\mu^{-\frac{n-2 k}{2}} U\left(\frac{x-x_{0}}{\mu}\right)$. Then

$$
\begin{aligned}
\left|x-x_{0}\right|^{\frac{n-2 k}{2}}\left|U_{\mu, x_{0}}(x)\right| & =|X|^{\frac{n-2 k}{2}}|U(X)| \text { with } x=x_{0}+\mu_{\alpha} X \\
& =C\left(\frac{|X|}{1+|X|^{2}}\right)^{\frac{n-2 k}{2}}: \text { Bounded and } \ll 1 \text { for }|X| \gg 1
\end{aligned}
$$

So, more or less, the quantity (\star) is preserved after the change of function.

Let us go back to the invariance. A paramount quantity here is

$$
w_{\alpha}(x):=d_{g}\left(x, x_{\alpha}\right)^{\frac{n-2 k}{2}} u_{\alpha}(x)
$$

originating in Schoen-Zhang.
Why? For a function $U: \mathbb{R}^{n} \rightarrow \mathbb{R}$, recall $U_{\mu, x_{0}}(x):=\mu^{-\frac{n-2 k}{2}} U\left(\frac{x-x_{0}}{\mu}\right)$. Then

$$
\begin{aligned}
\left|x-x_{0}\right|^{\frac{n-2 k}{2}}\left|U_{\mu, x_{0}}(x)\right| & =|X|^{\frac{n-2 k}{2}}|U(X)| \text { with } x=x_{0}+\mu_{\alpha} X \\
& =C\left(\frac{|X|}{1+|X|^{2}}\right)^{\frac{n-2 k}{2}}: \text { Bounded and } \ll 1 \text { for }|X| \gg 1
\end{aligned}
$$

So, more or less, the quantity (\star) is preserved after the change of function.

- Claim 1: $\left(w_{\alpha}\right)$ is bounded:

Let us go back to the invariance. A paramount quantity here is

$$
w_{\alpha}(x):=d_{g}\left(x, x_{\alpha}\right)^{\frac{n-2 k}{2}} u_{\alpha}(x)
$$

originating in Schoen-Zhang.
Why? For a function $U: \mathbb{R}^{n} \rightarrow \mathbb{R}$, recall $U_{\mu, x_{0}}(x):=\mu^{-\frac{n-2 k}{2}} U\left(\frac{x-x_{0}}{\mu}\right)$. Then

$$
\begin{aligned}
\left|x-x_{0}\right|^{\frac{n-2 k}{2}}\left|U_{\mu, x_{0}}(x)\right| & =|X|^{\frac{n-2 k}{2}}|U(X)| \text { with } x=x_{0}+\mu_{\alpha} X \\
& =C\left(\frac{|X|}{1+|X|^{2}}\right)^{\frac{n-2 k}{2}}: \text { Bounded and } \ll 1 \text { for }|X| \gg 1
\end{aligned}
$$

So, more or less, the quantity (\star) is preserved after the change of function.

- Claim 1: $\left(w_{\alpha}\right)$ is bounded:

$$
d_{g}\left(x, x_{\alpha}\right)^{\frac{n-2 k}{2}}\left|u_{\alpha}(x)\right| \leq C \Rightarrow\left|V_{\alpha}(x)\right| \leq \frac{C}{d_{g}\left(x, x_{\alpha}\right)^{2 k}}: \text { Hardy potential }
$$

- $w_{\alpha}(x)$ is small "far from the peak":

Let us go back to the invariance. A paramount quantity here is

$$
w_{\alpha}(x):=d_{g}\left(x, x_{\alpha}\right)^{\frac{n-2 k}{2}} u_{\alpha}(x)
$$

originating in Schoen-Zhang.
Why? For a function $U: \mathbb{R}^{n} \rightarrow \mathbb{R}$, recall $U_{\mu, x_{0}}(x):=\mu^{-\frac{n-2 k}{2}} U\left(\frac{x-x_{0}}{\mu}\right)$. Then

$$
\begin{aligned}
\left|x-x_{0}\right|^{\frac{n-2 k}{2}}\left|U_{\mu, x_{0}}(x)\right| & =|X|^{\frac{n-2 k}{2}}|U(X)| \text { with } x=x_{0}+\mu_{\alpha} X \\
& =C\left(\frac{|X|}{1+|X|^{2}}\right)^{\frac{n-2 k}{2}}: \text { Bounded and } \ll 1 \text { for }|X| \gg 1
\end{aligned}
$$

So, more or less, the quantity (\star) is preserved after the change of function.

- Claim 1: $\left(w_{\alpha}\right)$ is bounded:

$$
d_{g}\left(x, x_{\alpha}\right)^{\frac{n-2 k}{2}}\left|u_{\alpha}(x)\right| \leq C \Rightarrow\left|V_{\alpha}(x)\right| \leq \frac{C}{d_{g}\left(x, x_{\alpha}\right)^{2 k}}: \text { Hardy potential }
$$

- $w_{\alpha}(x)$ is small "far from the peak":

$$
\lim _{\mathbf{R} \rightarrow+\infty} \lim _{\alpha \rightarrow+\infty} \sup _{\mathbf{M}-\mathbf{B}\left(\mathbf{x}_{\alpha}, \mathbf{R} \mu_{\alpha}\right)} \mathbf{d}_{\mathbf{g}}\left(\mathbf{x}, \mathbf{x}_{\alpha}\right)^{\frac{\mathbf{n}-2 \mathbf{k}}{2}}\left|\mathbf{u}_{\alpha}(\mathbf{x})\right|=\mathbf{0}
$$

So $\forall \epsilon>0, \exists R_{\epsilon}>0$ such that $\left|V_{\alpha}(x)\right| \leq \frac{\epsilon}{d_{g}\left(x, x_{\alpha}\right)^{2 k}}$ for all $d_{g}\left(x, x_{\alpha}\right)>R_{\epsilon} \mu_{\alpha}$

Back to the proof: What we consider now

Our equation rewrites

$$
\left(P_{\alpha}-V_{\alpha}\right) u_{\alpha}=0
$$

and

$$
\forall \epsilon>0, \exists R_{\epsilon}>0 \text { such that }\left|V_{\alpha}(x)\right| \leq \frac{\epsilon}{d_{g}\left(x, x_{\alpha}\right)^{2 k}} \text { for all } d_{g}\left(x, x_{\alpha}\right)>R_{\epsilon} \mu_{\alpha}
$$

Our equation rewrites

$$
\left(P_{\alpha}-V_{\alpha}\right) u_{\alpha}=0
$$

and

$$
\forall \epsilon>0, \exists R_{\epsilon}>0 \text { such that }\left|V_{\alpha}(x)\right| \leq \frac{\epsilon}{d_{g}\left(x, x_{\alpha}\right)^{2 k}} \text { for all } d_{g}\left(x, x_{\alpha}\right)>R_{\epsilon} \mu_{\alpha}
$$

In order to perform the argument that failed earlier, we need to get a pointwise control on G_{α}, the Green's function of $P_{\alpha}-V_{\alpha}$ with the property above.

Our equation rewrites

$$
\left(P_{\alpha}-V_{\alpha}\right) u_{\alpha}=0
$$

and

$$
\forall \epsilon>0, \exists R_{\epsilon}>0 \text { such that }\left|V_{\alpha}(x)\right| \leq \frac{\epsilon}{d_{g}\left(x, x_{\alpha}\right)^{2 k}} \text { for all } d_{g}\left(x, x_{\alpha}\right)>R_{\epsilon} \mu_{\alpha}
$$

In order to perform the argument that failed earlier, we need to get a pointwise control on G_{α}, the Green's function of $P_{\alpha}-V_{\alpha}$ with the property above.

What we get ($2 / 3$ of the paper):

- When $x, y \in M$ are far from the singularity x_{α}, then

$$
\left|G_{\alpha}(x, y)\right| \leq C d_{g}(x, y)^{2 k-n} \Rightarrow \operatorname{Good}
$$

Our equation rewrites

$$
\left(P_{\alpha}-V_{\alpha}\right) u_{\alpha}=0
$$

and

$$
\forall \epsilon>0, \exists R_{\epsilon}>0 \text { such that }\left|V_{\alpha}(x)\right| \leq \frac{\epsilon}{d_{g}\left(x, x_{\alpha}\right)^{2 k}} \text { for all } d_{g}\left(x, x_{\alpha}\right)>R_{\epsilon} \mu_{\alpha}
$$

In order to perform the argument that failed earlier, we need to get a pointwise control on G_{α}, the Green's function of $P_{\alpha}-V_{\alpha}$ with the property above.

What we get ($2 / 3$ of the paper):

- When $x, y \in M$ are far from the singularity x_{α}, then

$$
\left|G_{\alpha}(x, y)\right| \leq C d_{g}(x, y)^{2 k-n} \Rightarrow \text { Good }
$$

- When x is close to the singularity x_{α}, and y is far, then

$$
\left|G_{\alpha}(x, y)\right| \leq C d_{g}\left(x, x_{\alpha}\right)^{-\gamma}
$$

Our equation rewrites

$$
\left(P_{\alpha}-V_{\alpha}\right) u_{\alpha}=0
$$

and

$$
\forall \epsilon>0, \exists R_{\epsilon}>0 \text { such that }\left|V_{\alpha}(x)\right| \leq \frac{\epsilon}{d_{g}\left(x, x_{\alpha}\right)^{2 k}} \text { for all } d_{g}\left(x, x_{\alpha}\right)>R_{\epsilon} \mu_{\alpha}
$$

In order to perform the argument that failed earlier, we need to get a pointwise control on G_{α}, the Green's function of $P_{\alpha}-V_{\alpha}$ with the property above.

What we get ($2 / 3$ of the paper):

- When $x, y \in M$ are far from the singularity x_{α}, then

$$
\left|G_{\alpha}(x, y)\right| \leq C d_{g}(x, y)^{2 k-n} \Rightarrow \text { Good }
$$

- When x is close to the singularity x_{α}, and y is far, then

$$
\left|G_{\alpha}(x, y)\right| \leq C d_{g}\left(x, x_{\alpha}\right)^{-\gamma}
$$

where $\gamma>0$ can be chosen as small as we want when $\epsilon>0$ is small enough: Good.

Our equation rewrites

$$
\left(P_{\alpha}-V_{\alpha}\right) u_{\alpha}=0
$$

and

$$
\forall \epsilon>0, \exists R_{\epsilon}>0 \text { such that }\left|V_{\alpha}(x)\right| \leq \frac{\epsilon}{d_{g}\left(x, x_{\alpha}\right)^{2 k}} \text { for all } d_{g}\left(x, x_{\alpha}\right)>R_{\epsilon} \mu_{\alpha}
$$

In order to perform the argument that failed earlier, we need to get a pointwise control on G_{α}, the Green's function of $P_{\alpha}-V_{\alpha}$ with the property above.

What we get ($2 / 3$ of the paper):

- When $x, y \in M$ are far from the singularity x_{α}, then

$$
\left|G_{\alpha}(x, y)\right| \leq C d_{g}(x, y)^{2 k-n} \Rightarrow \text { Good }
$$

- When x is close to the singularity x_{α}, and y is far, then

$$
\left|G_{\alpha}(x, y)\right| \leq C d_{g}\left(x, x_{\alpha}\right)^{-\gamma}
$$

where $\gamma>0$ can be chosen as small as we want when $\epsilon>0$ is small enough: Good.

- For general x, y : a mix of these two cases.

We get a sharp control of the Green's function and of its derivatives

At the end of the day, we have proved that

Theorem (R., 2022)

$$
\left\{\begin{array}{c}
P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M \\
+ \text { Blow-up } \\
+ \text { Minimal energy }
\end{array}\right\} \Rightarrow\left|u_{\alpha}(x)\right| \leq C\left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2}+d_{g}\left(x, x_{\alpha}\right)^{2}}\right)^{\frac{n-2 k}{2}}
$$

where $\mu_{\alpha}^{-\frac{n-2 k}{2}}=\left|u_{\alpha}\left(x_{\alpha}\right)\right|=\sup _{M}\left|u_{\alpha}\right|$.

At the end of the day, we have proved that

Theorem (R., 2022)

$$
\left\{\begin{array}{c}
P_{\alpha} u_{\alpha}=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M \\
+ \text { Blow-up } \\
+ \text { Minimal energy }
\end{array}\right\} \Rightarrow\left|u_{\alpha}(x)\right| \leq C\left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2}+d_{g}\left(x, x_{\alpha}\right)^{2}}\right)^{\frac{n-2 k}{2}}
$$

where $\mu_{\alpha}^{-\frac{n-2 k}{2}}=\left|u_{\alpha}\left(x_{\alpha}\right)\right|=\sup _{M}\left|u_{\alpha}\right|$.

For any function $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\Omega \subset \mathbb{R}^{n}$, we have that

$$
\int_{\Omega}\left(x^{i} \partial_{i} v+\frac{n-2 k}{2} v\right)\left(\Delta_{\xi}^{k} v-|v|^{2^{\star}-2} v\right) d x=\int_{\partial \Omega} \ldots
$$

For any function $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\Omega \subset \mathbb{R}^{n}$, we have that

$$
\int_{\Omega}\left(x^{i} \partial_{i} v+\frac{n-2 k}{2} v\right)\left(\Delta_{\xi}^{k} v-|v|^{2^{\star}-2} v\right) d x=\int_{\partial \Omega} \cdots
$$

Our equation is

$$
\Delta_{g}^{k} u_{\alpha}+(-1)^{k-1} \nabla^{k-1}\left(A_{\alpha} \nabla^{k-1} u_{\alpha}\right)+\text { lot }=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M
$$

For any function $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\Omega \subset \mathbb{R}^{n}$, we have that

$$
\int_{\Omega}\left(x^{i} \partial_{i} v+\frac{n-2 k}{2} v\right)\left(\Delta_{\xi}^{k} v-|v|^{2^{\star}-2} v\right) d x=\int_{\partial \Omega} \cdots
$$

Our equation is

$$
\Delta_{g}^{k} u_{\alpha}+(-1)^{k-1} \nabla^{k-1}\left(A_{\alpha} \nabla^{k-1} u_{\alpha}\right)+l o t=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M
$$

we write it as

$$
P_{g} u_{\alpha}+(-1)^{k-1} \nabla^{k-1}\left(\left(A_{\alpha}-A_{G J M S}\right) \nabla^{k-1} u_{\alpha}\right)+\text { lot }=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M
$$

For any function $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\Omega \subset \mathbb{R}^{n}$, we have that

$$
\int_{\Omega}\left(x^{i} \partial_{i} v+\frac{n-2 k}{2} v\right)\left(\Delta_{\xi}^{k} v-|v|^{2^{\star}-2} v\right) d x=\int_{\partial \Omega} \cdots
$$

Our equation is

$$
\Delta_{g}^{k} u_{\alpha}+(-1)^{k-1} \nabla^{k-1}\left(A_{\alpha} \nabla^{k-1} u_{\alpha}\right)+\text { lot }=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M
$$

we write it as

$$
P_{g} u_{\alpha}+(-1)^{k-1} \nabla^{k-1}\left(\left(A_{\alpha}-A_{G J M S}\right) \nabla^{k-1} u_{\alpha}\right)+\text { lot }=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M
$$

we can change the metric in metric \tilde{g} conformal to g becomes "almost flat", that is $\operatorname{Ric}_{\tilde{g}}\left(x_{\alpha}\right)=0$.

For any function $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\Omega \subset \mathbb{R}^{n}$, we have that

$$
\int_{\Omega}\left(x^{i} \partial_{i} v+\frac{n-2 k}{2} v\right)\left(\Delta_{\xi}^{k} v-|v|^{2^{\star}-2} v\right) d x=\int_{\partial \Omega} \cdots
$$

Our equation is

$$
\Delta_{g}^{k} u_{\alpha}+(-1)^{k-1} \nabla^{k-1}\left(A_{\alpha} \nabla^{k-1} u_{\alpha}\right)+\text { lot }=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M
$$

we write it as

$$
P_{g} u_{\alpha}+(-1)^{k-1} \nabla^{k-1}\left(\left(A_{\alpha}-A_{G J M S}\right) \nabla^{k-1} u_{\alpha}\right)+\text { lot }=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M
$$

we can change the metric in metric \tilde{g} conformal to g becomes "almost flat", that is $\operatorname{Ri} \tilde{\varepsilon}_{\tilde{g}}\left(x_{\alpha}\right)=0$. We then write

$$
\Delta_{\tilde{g}}^{k} u_{\alpha}+(-1)^{k-1} \nabla^{k-1}\left(\left(A_{\alpha}-A_{G J M S}\right) \nabla^{k-1} u_{\alpha}\right)+l o t=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M
$$

For any function $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\Omega \subset \mathbb{R}^{n}$, we have that

$$
\int_{\Omega}\left(x^{i} \partial_{i} v+\frac{n-2 k}{2} v\right)\left(\Delta_{\xi}^{k} v-|v|^{2^{\star}-2} v\right) d x=\int_{\partial \Omega} \cdots
$$

Our equation is

$$
\Delta_{g}^{k} u_{\alpha}+(-1)^{k-1} \nabla^{k-1}\left(A_{\alpha} \nabla^{k-1} u_{\alpha}\right)+\text { lot }=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M
$$

we write it as

$$
P_{g} u_{\alpha}+(-1)^{k-1} \nabla^{k-1}\left(\left(A_{\alpha}-A_{G J M S}\right) \nabla^{k-1} u_{\alpha}\right)+\text { lot }=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M
$$

we can change the metric in metric \tilde{g} conformal to g becomes "almost flat", that is $\operatorname{Ric}_{\tilde{g}}\left(x_{\alpha}\right)=0$. We then write

$$
\Delta_{\tilde{g}}^{k} u_{\alpha}+(-1)^{k-1} \nabla^{k-1}\left(\left(A_{\alpha}-A_{G J M S}\right) \nabla^{k-1} u_{\alpha}\right)+\text { lot }=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M
$$

In the Pohozaev identity, we then get

$$
\int_{\Omega}\left(x^{i} \partial_{i} u_{\alpha}+\frac{n-2 k}{2} u_{\alpha}\right)\left(\left(\Delta_{\xi}^{k}-\Delta_{\tilde{g}}^{k}\right) u_{\alpha}-(-1)^{k-1} \nabla^{k-1}\left(\left(A_{\alpha}-A_{G J M S}\right) \nabla^{k-1} u_{\alpha}\right)\right) d x=\ldots
$$

For any function $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\Omega \subset \mathbb{R}^{n}$, we have that

$$
\int_{\Omega}\left(x^{i} \partial_{i} v+\frac{n-2 k}{2} v\right)\left(\Delta_{\xi}^{k} v-|v|^{2^{\star}-2} v\right) d x=\int_{\partial \Omega} \cdots
$$

Our equation is

$$
\Delta_{g}^{k} u_{\alpha}+(-1)^{k-1} \nabla^{k-1}\left(A_{\alpha} \nabla^{k-1} u_{\alpha}\right)+\text { lot }=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M
$$

we write it as

$$
P_{g} u_{\alpha}+(-1)^{k-1} \nabla^{k-1}\left(\left(A_{\alpha}-A_{G J M S}\right) \nabla^{k-1} u_{\alpha}\right)+\text { lot }=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M
$$

we can change the metric in metric \tilde{g} conformal to g becomes "almost flat", that is $\operatorname{Ri} \tilde{\tilde{g}}_{\tilde{g}}\left(x_{\alpha}\right)=0$. We then write

$$
\Delta_{\tilde{\mathrm{g}}}^{k} u_{\alpha}+(-1)^{k-1} \nabla^{k-1}\left(\left(A_{\alpha}-A_{G J M S}\right) \nabla^{k-1} u_{\alpha}\right)+l o t=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M
$$

In the Pohozaev identity, we then get
$\int_{\Omega} T\left(u_{\alpha}\right)(\underbrace{\left(\Delta_{\xi}^{k}-\Delta_{\tilde{g}}^{k}\right) u_{\alpha}}_{\text {measures } \tilde{g}-\xi}-(-1)^{k-1} \nabla^{k-1}(\underbrace{\left(A_{\alpha}-A_{G J M S}\right)}_{\text {distance from the conf.op. }} \nabla^{k-1} u_{\alpha})) d x=\ldots$
where $T\left(u_{\alpha}\right):=x^{i} \partial_{i} u_{\alpha}+\frac{n-2 k}{2} u_{\alpha}$.

For any function $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\Omega \subset \mathbb{R}^{n}$, we have that

$$
\int_{\Omega}\left(x^{i} \partial_{i} v+\frac{n-2 k}{2} v\right)\left(\Delta_{\xi}^{k} v-|v|^{2^{\star}-2} v\right) d x=\int_{\partial \Omega} \cdots
$$

Our equation is

$$
\Delta_{g}^{k} u_{\alpha}+(-1)^{k-1} \nabla^{k-1}\left(A_{\alpha} \nabla^{k-1} u_{\alpha}\right)+\text { lot }=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M
$$

we write it as

$$
P_{g} u_{\alpha}+(-1)^{k-1} \nabla^{k-1}\left(\left(A_{\alpha}-A_{G J M S}\right) \nabla^{k-1} u_{\alpha}\right)+\text { lot }=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M
$$

we can change the metric in metric \tilde{g} conformal to g becomes "almost flat", that is $\operatorname{Ri} \tilde{\tilde{g}}_{\tilde{g}}\left(x_{\alpha}\right)=0$. We then write

$$
\Delta_{\tilde{\mathrm{g}}}^{k} u_{\alpha}+(-1)^{k-1} \nabla^{k-1}\left(\left(A_{\alpha}-A_{G J M S}\right) \nabla^{k-1} u_{\alpha}\right)+l o t=\left|u_{\alpha}\right|^{2^{\star}-2} u_{\alpha} \text { in } M
$$

In the Pohozaev identity, we then get

$$
\int_{\Omega} T\left(u_{\alpha}\right)(\underbrace{\left(\Delta_{\xi}^{k}-\Delta_{\tilde{g}}^{k}\right) u_{\alpha}}_{\text {measures } \tilde{g}-\xi}-(-1)^{k-1} \nabla^{k-1}(\underbrace{\left(A_{\alpha}-A_{G J M S}\right)}_{\text {distance from the conf.op. }} \nabla^{k-1} u_{\alpha})) d x=\ldots
$$

where $T\left(u_{\alpha}\right):=x^{i} \partial_{i} u_{\alpha}+\frac{n-2 k}{2} u_{\alpha}$. When $n>2 k+2$, we get

$$
\text { Weyl }_{g} \otimes B+\int_{\mathbb{R}^{n}}\left(A_{\infty}-A_{G J M S}\right)_{x_{0}}\left(\nabla^{k-1} U, \nabla^{k-1} U\right) d X=0
$$

On (M, g) of dimension $n \geq 5$, see Hebey, there exists $B>0$ such that the following Sobolev inequality holds:

$$
\left(\int_{M}|u|^{\frac{2 n}{n-4}} d v_{g}\right)^{\frac{n-4}{n}} \leq K_{4}(n)\left(\int_{M}\left(\Delta_{g} u\right)^{2} d v_{g}+B\|u\|_{H_{1}^{2}}^{2}\right) \text { for all } u \in H_{2}^{2}(M) . \quad\left(I_{B}\right)
$$

where $K_{4}(n)$ is the optimal Euclidean constant.

On (M, g) of dimension $n \geq 5$, see Hebey, there exists $B>0$ such that the following Sobolev inequality holds:

$$
\left(\int_{M}|u|^{\frac{2 n}{n-4}} d v_{g}\right)^{\frac{n-4}{n}} \leq K_{4}(n)\left(\int_{M}\left(\Delta_{g} u\right)^{2} d v_{g}+B\|u\|_{H_{1}^{2}}^{2}\right) \text { for all } u \in H_{2}^{2}(M)
$$

where $K_{4}(n)$ is the optimal Euclidean constant.Let $B_{0}(g)$ be the smallest number B such that this inequality holds for all $u \in H_{2}^{2}(M)$.

Theorem

Assume that $n \geq 6$. Then if there is no nontrivial extremal for $\left(I_{B_{0}(g)}\right)$, then

$$
B_{0}(g)=\frac{3 n^{2}-6 n-12}{6 n(n-1)} \max _{x \in M} R_{g}(x)
$$

$$
\begin{gathered}
\operatorname{Pag} u=\Delta_{g}^{2} u-\operatorname{div}_{g}\left[\left(a_{n} S_{g} g+b_{n} R i c_{g}\right)^{\#} d u\right]+\frac{n-4}{2} Q_{g} u, \\
a_{n}=\frac{(n-2)^{2}+4}{2(n-1)(n-2)}, \quad b_{n}=-\frac{4}{n-2}, \\
Q_{g}^{n}=\frac{1}{2(n-1)} \Delta_{g} R_{g}+\frac{n^{3}-4 n^{2}+16 n-16}{8(n-1)^{2}(n-2)^{2}} R_{g}^{2}-\frac{2}{(n-2)^{2}}\left|R i c_{g}\right|_{g}^{2} .
\end{gathered}
$$

