Localization of peaks for high-order equations

Frédéric Robert Institut Elie Cartan, Université de Lorraine (Nancy)

Grenoble, June 2023

<ロト < 部 ト < 差 ト < 差 ト 差 の Q () 1/20

Let (M, g) be a compact Riemmanian manifold of dimension $n \ge 2$, and take $k \in \mathbb{N}$ such that $n > 2k \ge 2$. We are interested in functions $u \in C^{2k}(M)$ that are solutions to

$$Pu = |u|^{2^{\star}-2}u$$
 in M with $2^{\star} := \frac{2n}{n-2k}$

and

 $P = \Delta_g^k + lot$ is a differential operator of order 2k.

Let (M,g) be a compact Riemmanian manifold of dimension $n \ge 2$, and take $k \in \mathbb{N}$ such that $n > 2k \ge 2$. We are interested in functions $u \in C^{2k}(M)$ that are solutions to

$$Pu = |u|^{2^{*}-2}u$$
 in M with $2^{*} := \frac{2n}{n-2k}$

and

 $P = \Delta_g^k + lot$ is a differential operator of order 2k.

Here, $\Delta_g = -\text{div}_g \nabla$. Such a PDE arises in conformal geometry:

k = 1, the scalar curvature equation is

$$\Delta_g u + \frac{n-2}{4(n-1)} R_g u = \frac{n-2}{4(n-1)} R_{\tilde{g}} u^{\frac{n+2}{n-2}}, \ u > 0$$

where R_g (resp. $R_{\tilde{g}}$) is the scalar curvature of g (resp. $\tilde{g} = u^{\frac{4}{n-2}}g$).

• k = 2, the Paneitz operator connects Branson's *Q*-curvatures in a conformal class too:

 $\Delta_g^2 u + \ldots = Q_{\tilde{g}} u^{\frac{n+4}{n-4}}$

<ロト<部ト<E>< E> E のQで 2/20

Let (M, g) be a compact Riemmanian manifold of dimension $n \ge 2$, and take $k \in \mathbb{N}$ such that $n > 2k \ge 2$. We are interested in functions $u \in C^{2k}(M)$ that are solutions to

$$Pu = |u|^{2^{\star}-2}u$$
 in M with $2^{\star} := \frac{2n}{n-2k}$

and

 $P = \Delta_g^k + lot$ is a differential operator of order 2k.

Here, $\Delta_g = -\text{div}_g \nabla$. Such a PDE arises in conformal geometry:

k = 1, the scalar curvature equation is

$$\Delta_g u + \frac{n-2}{4(n-1)} R_g u = \frac{n-2}{4(n-1)} R_{\tilde{g}} u^{\frac{n+2}{n-2}}, \ u > 0$$

where R_g (resp. $R_{\tilde{g}}$) is the scalar curvature of g (resp. $\tilde{g} = u^{\frac{4}{n-2}}g$).

• k = 2, the Paneitz operator connects Branson's *Q*-curvatures in a conformal class too:

$$\Delta_g^2 u + \ldots = Q_{\tilde{g}} u^{\frac{n+4}{n-4}}$$

• More generally, for any k \geq 1, there is the conformal GJMS operator P_g and a notion of Q-curvature

Let (M, g) be a compact Riemmanian manifold of dimension $n \ge 2$, and take $k \in \mathbb{N}$ such that $n > 2k \ge 2$. We are interested in functions $u \in C^{2k}(M)$ that are solutions to

$$Pu = |u|^{2^{\star}-2}u$$
 in M with $2^{\star} := \frac{2n}{n-2k}$

and

 $P = \Delta_g^k + lot$ is a differential operator of order 2k.

Here, $\Delta_g = -\text{div}_g \nabla$. Such a PDE arises in conformal geometry:

k = 1, the scalar curvature equation is

$$\Delta_g u + \frac{n-2}{4(n-1)} R_g u = \frac{n-2}{4(n-1)} R_{\tilde{g}} u^{\frac{n+2}{n-2}}, \ u > 0$$

where R_g (resp. $R_{\tilde{g}}$) is the scalar curvature of g (resp. $\tilde{g} = u^{\frac{4}{n-2}}g$).

• k = 2, the Paneitz operator connects Branson's *Q*-curvatures in a conformal class too:

$$\Delta_g^2 u + \ldots = Q_{\tilde{g}} u^{\frac{n+4}{n-4}}$$

• More generally, for any k \geq 1, there is the conformal GJMS operator P_g and a notion of Q-curvature

These operators are conformally invariant in the following sense: if $\tilde{g} = u^{\frac{4}{n-2k}}g$, then

$$P_{\tilde{g}}\varphi = u^{-(2^{\star}-1)}P_g(u\varphi)$$
 for all $\varphi \in C^{\infty}(M)$

When $(\mathbf{M}, \mathbf{g}) = (\mathbb{R}^n, \xi)$ (which is not compact...) the model is

 $\Delta_{eucl}^k U = U^{2^{\star}-1}, \ U > 0 \text{ in } \mathbb{R}^n.$

When $(\mathbf{M}, \mathbf{g}) = (\mathbb{R}^n, \xi)$ (which is not compact...) the model is

 $\Delta_{eucl}^k U = U^{2^{\star}-1}, \ U > 0 \text{ in } \mathbb{R}^n.$

The equation is **invariant** in the following sense: for $x_0 \in \mathbb{R}^n$ and $\mu > 0$, define

$$U_{\mu,x_0}(x):=\mu^{-\frac{n-2k}{2}}U\left(\frac{x-x_0}{\mu}\right).$$

When $(\mathbf{M}, \mathbf{g}) = (\mathbb{R}^n, \xi)$ (which is not compact...) the model is

 $\Delta_{eucl}^k U = U^{2^{\star}-1}, \ U > 0 \text{ in } \mathbb{R}^n.$

The equation is **invariant** in the following sense: for $x_0 \in \mathbb{R}^n$ and $\mu > 0$, define

$$U_{\mu,x_0}(x):=\mu^{-\frac{n-2k}{2}}U\left(\frac{x-x_0}{\mu}\right).$$

Then

$$\Delta^k_{\xi} U_{\mu,x_0} = U^{2^\star - 1}_{\mu,x_0}, \ U_{\mu,x_0} > 0 \ ext{in} \ \mathbb{R}^n.$$

When $(\mathbf{M}, \mathbf{g}) = (\mathbb{R}^n, \xi)$ (which is not compact...) the model is

 $\Delta_{eucl}^k U = U^{2^{\star}-1}, \ U > 0 \text{ in } \mathbb{R}^n.$

The equation is **invariant** in the following sense: for $x_0 \in \mathbb{R}^n$ and $\mu > 0$, define

$$U_{\mu,x_0}(x) := \mu^{-\frac{n-2k}{2}} U\left(\frac{x-x_0}{\mu}\right)$$

Then

$$\Delta_{\xi}^{k}U_{\mu,x_{0}} = U_{\mu,x_{0}}^{2^{\star}-1}, \ U_{\mu,x_{0}} > 0 \text{ in } \mathbb{R}^{n}.$$

This invariance generates an intrinsic dynamic of the equation.

For instance, you can take

$$U(x) := \alpha_{n,k} \left(\frac{1}{1+|x|^2}\right)^{\frac{n-2k}{2}} \qquad U^{\frac{4}{n-2k}} = \alpha'_{n,k} \left(\frac{1}{1+|x|^2}\right)^2 \Rightarrow \text{ round sphere}$$

so that

$$U_{\mu,x_0}(x) := \alpha_{n,k} \left(\frac{\mu}{\mu^2 + |x - x_0|^2} \right)^{\frac{n-2k}{2}}$$

so that

$$\lim_{\mu \to 0} U_{\mu,x_0}(x_0) = +\infty \text{ and } \lim_{\mu \to 0} U_{\mu,x_0}(x) = 0 \text{ for all } x \neq x_0$$

3 / 20

イロト イヨト イヨト イヨト 二日

 $\label{eq:Figure: lim} \ensuremath{\mathsf{Figure:}}\ \ensuremath{\mathsf{lim}}\ \ensuremath{\mathsf{\mu}}\ \ensuremath{\to}\ \ensuremath{\mathsf{0}}\ \ensuremath{\mathsf{U}}\ \ensuremath{\mathsf{\mu}}\ \ensuremath{\mathsf{x}}\ \ensuremath{\mathsf{0}}\ \ensuremath{\mathsf{\mu}}\ \ensuremath{\mathsf{x}}\ \ensuremath{\mathsf{0}}\ \ensuremath{\mathsf{0}}\ \ensuremath{\mathsf{\mu}}\ \ensuremath{\mathsf{x}}\ \ensuremath{\mathsf{0}}\ \ensuremath{\mathsf{\mu}}\ \ensuremath{\mathsf{x}}\ \ensuremath{\mathsf{0}}\ \ensuremath{\mathsf{Exp}}\ \ensuremath{\mathsf{Figure:}}\ \ensuremath{\mathsf{1}}\ \ensuremath{\mathsf{m}}\ \ensuremath{\mathsf{\mu}}\ \ensuremath{\mathsf{0}}\ \ensuremath{\mathsf{0}}\ \ensuremath{\mathsf{m}}\ \ensuremath{\mathsfm}\ \ensuremath{\m}\ \ensuremath{m}}\$

$$U_{\mu,x_0}(x) := \alpha_{n,k} \left(\frac{\mu}{\mu^2 + |x - x_0|^2} \right)^{\frac{n-2k}{2}} ; \ \Delta_{\xi}^k U_{\mu,x_0} = U_{\mu,x_0}^{2^{\star}-1}, \ U_{\mu,x_0} > 0 \text{ in } \mathbb{R}^n.$$

$$\Rightarrow \text{Instability.}$$

< □ > < ⑦ > < 差 > < 差 > 差 ● ○ < ♡ < ♡ 4/20

 $\label{eq:Figure: lim} \ensuremath{\mathsf{Figure: lim}}_{\mu \to 0} \ensuremath{ U_{\mu,x_0}}(x_0) = +\infty \mbox{ and } \ensuremath{\mathsf{lim}}_{\mu \to 0} \ensuremath{ U_{\mu,x_0}}(x) = 0 \mbox{ for all } x \neq x_0$

$$U_{\mu,x_0}(x) := \alpha_{n,k} \left(\frac{\mu}{\mu^2 + |x - x_0|^2} \right)^{\frac{n-2k}{2}} ; \ \Delta_{\xi}^k U_{\mu,x_0} = U_{\mu,x_0}^{2^{\star}-1}, \ U_{\mu,x_0} > 0 \ \text{in } \mathbb{R}^n.$$

\Rightarrow Instability.

And they are going to be our model to describe instability But there can be other types of peaks.

Definition (Exponential chart)

A smooth exponential chart exp around $p_0 \in M$ is a function

$$\begin{array}{rcl} e\tilde{x}p_p: & \mathbb{R}^n & \to & M\\ & (X^1,...,X^n) & \mapsto & exp_p(\sum_i X^i E_i(p)) \end{array}$$

where $exp_p : T_pM \to M$ is the usual exponential map and $(E_i(p))_{i=1,...,n}$ is a smooth orthonormal basis of T_pM , p close to p_0 .

Definition (Exponential chart)

A smooth exponential chart exp around $p_0 \in M$ is a function

$$\begin{array}{rcl} \exp_{\rho}: & \mathbb{R}^n & \to & M \\ & (X^1,...,X^n) & \mapsto & \exp_{\rho}(\sum_i X^i E_i(\rho)) \end{array}$$

where $exp_p : T_pM \to M$ is the usual exponential map and $(E_i(p))_{i=1,...,n}$ is a smooth orthonormal basis of T_pM , p close to p_0 .

Definition (Peak)

We say that a family $B = (B_{\alpha})_{\alpha} \in H_k^2(M)$ is a <u>Peak</u> centered at $(x_{\alpha})_{\alpha} \in M$ with radius $(\mu_{\alpha})_{\alpha} \to 0$ if there exists $U \in D_k^2(\mathbb{R}^n)$, $U \not\equiv 0$, and an exponential chart exp around $x_0 := \lim_{\alpha \to 0} x_{\alpha}$ and a cutoff function (η_{α}) such that

$$B_{\alpha}(x) = \eta(x)\mu_{\alpha}^{-\frac{n-2k}{2}}U\left(\frac{e\tilde{x}p_{x_{\alpha}}^{-1}(x)}{\mu_{\alpha}}\right) + o(1) \text{ in } H_{k}^{2}(M).$$
(1)

Definition (Exponential chart)

A smooth exponential chart exp around $p_0 \in M$ is a function

$$\begin{array}{rcl} \exp_{\rho}: & \mathbb{R}^n & \to & M \\ & (X^1, ..., X^n) & \mapsto & \exp_{\rho}(\sum_i X^i E_i(\rho)) \end{array}$$

where $exp_p : T_pM \to M$ is the usual exponential map and $(E_i(p))_{i=1,...,n}$ is a smooth orthonormal basis of T_pM , p close to p_0 .

Definition (Peak)

We say that a family $B = (B_{\alpha})_{\alpha} \in H_k^2(M)$ is a <u>Peak</u> centered at $(x_{\alpha})_{\alpha} \in M$ with radius $(\mu_{\alpha})_{\alpha} \to 0$ if there exists $U \in D_k^2(\mathbb{R}^n)$, $U \not\equiv 0$, and an exponential chart exp around $x_0 := \lim_{\alpha \to 0} x_{\alpha}$ and a cutoff function (η_{α}) such that

$$B_{\alpha}(x) = \eta(x)\mu_{\alpha}^{-\frac{n-2k}{2}} U\left(\frac{e\tilde{x}p_{x_{\alpha}}^{-1}(x)}{\mu_{\alpha}}\right) + o(1) \text{ in } H_{k}^{2}(M).$$
(1)

The pair $(U, e\tilde{x}p_{x_{\alpha}})$ is not unique.

Definition (Exponential chart)

A smooth exponential chart exp around $p_0 \in M$ is a function

$$\begin{array}{rcl} \exp_{\rho}: & \mathbb{R}^n & \to & M \\ & (X^1, ..., X^n) & \mapsto & \exp_{\rho}(\sum_i X^i E_i(\rho)) \end{array}$$

where $exp_p : T_pM \to M$ is the usual exponential map and $(E_i(p))_{i=1,...,n}$ is a smooth orthonormal basis of T_pM , p close to p_0 .

Definition (Peak)

We say that a family $B = (B_{\alpha})_{\alpha} \in H_k^2(M)$ is a <u>Peak</u> centered at $(x_{\alpha})_{\alpha} \in M$ with radius $(\mu_{\alpha})_{\alpha} \to 0$ if there exists $U \in D_k^2(\mathbb{R}^n)$, $U \not\equiv 0$, and an exponential chart exp around $x_0 := \lim_{\alpha \to 0} x_{\alpha}$ and a cutoff function (η_{α}) such that

$$B_{\alpha}(x) = \eta(x)\mu_{\alpha}^{-\frac{n-2k}{2}} U\left(\frac{e\tilde{x}p_{x_{\alpha}}^{-1}(x)}{\mu_{\alpha}}\right) + o(1) \text{ in } H_{k}^{2}(M).$$
(1)

The pair $(U, e\tilde{x}p_{x_{\alpha}})$ is not unique. The model is

$$U_{\mu,x_0}(x) := \eta(x)\alpha_{n,k} \left(\frac{\mu_{\alpha}}{\mu_{\alpha}^2 + d_g(x,x_{\alpha})^2}\right)^{\frac{n-2k}{2}}$$

Theorem (R., 2023)

Consider a family $(u_{\alpha})_{\alpha} \in C^{2k}(M)$ such that

 $\Delta_g^k u_\alpha + (-1)^{k-1} \nabla^{k-1} (\mathcal{A}_\alpha \nabla^{k-1} u_\alpha) + \mathit{lot} = |u_\alpha|^{2^\star - 2} u_\alpha \textit{ in } \mathcal{M}, \textit{ for all } \alpha > 0.$

with $u_{\alpha} = B_{\alpha} + o(1)$ where $B = (B_{\alpha})_{\alpha}$ is a peak.

Theorem (R., 2023)

Consider a family
$$(u_{\alpha})_{\alpha} \in C^{2k}(M)$$
 such that

$$\Delta_{g}^{k}u_{\alpha} + (-1)^{k-1}\nabla^{k-1}(A_{\alpha}\nabla^{k-1}u_{\alpha}) + lot = |u_{\alpha}|^{2^{*}-2}u_{\alpha} \text{ in } M, \text{ for all } \alpha > 0.$$
with $u_{\alpha} = B_{\alpha} + o(1)$ where $B = (B_{\alpha})_{\alpha}$ is a peak.
• If $n > 2k + 2$ (similar for $n = 2k + 2$), then
 $Weyl_{g} \otimes B + \int_{\mathbb{R}^{n}} (A_{\infty} - A_{GJMS})_{x_{0}} \left(\nabla^{k-1}U, \nabla^{k-1}U\right) dX = 0$
• If $n = 2k + 1$, then $\left(\int_{\mathbb{R}^{n}} |U|^{2^{*}-2}U dX\right) m_{P_{\infty}}(x_{0}) = 0$

Theorem (R., 2023)

Consider a family
$$(u_{\alpha})_{\alpha} \in C^{2k}(M)$$
 such that

$$\Delta_{g}^{k}u_{\alpha} + (-1)^{k-1}\nabla^{k-1}(A_{\alpha}\nabla^{k-1}u_{\alpha}) + lot = |u_{\alpha}|^{2^{*}-2}u_{\alpha} \text{ in } M, \text{ for all } \alpha > 0.$$
with $u_{\alpha} = B_{\alpha} + o(1)$ where $B = (B_{\alpha})_{\alpha}$ is a peak.
• If $n > 2k + 2$ (similar for $n = 2k + 2$), then
 $Weyl_{g} \otimes B + \int_{\mathbb{R}^{n}} (A_{\infty} - A_{GJMS})_{x_{0}} (\nabla^{k-1}U, \nabla^{k-1}U) dX = 0$
• If $n = 2k + 1$, then $\left(\int_{\mathbb{R}^{n}} |U|^{2^{*}-2}U dX\right) m_{P_{\infty}}(x_{0}) = 0$

Moreover,

$$|u_{\alpha}(x)| \leq C \left(\frac{\mu_{\alpha}}{\mu_{\alpha}^2 + d_g(x, x_{\alpha})^2}\right)^{\frac{n-2}{2}}$$

・ロト・日本・ キャー キー うへの

If
$$u_{\alpha} = B_{\alpha} + o(1)$$
 for a bubble $B = (B_{\alpha})_{\alpha}$ where $P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{\star}-2}u_{\alpha}$, then

$$\operatorname{\mathsf{Weyl}}_g\otimes B + \int_{\mathbb{R}^n} \left(A_\infty - A_{GJMS}
ight)_{x_0} \left(
abla^{k-1} U,
abla^{k-1} U
ight) \, dX = 0$$

$$P_{lpha}
ightarrow P_{\infty} = \Delta_g^k + (-1)^{k-1}
abla^{k-1} (A_{\infty}
abla^{k-1}) + lot$$

and $P_g = \Delta_g^k + (-1)^{k-1} \nabla^{k-1} (A_{GJMS} \nabla^{k-1}) + \textit{lot}$ is the conf. invariant GJMS operator

If
$$u_{\alpha} = B_{\alpha} + o(1)$$
 for a bubble $B = (B_{\alpha})_{\alpha}$ where $P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{\star}-2}u_{\alpha}$, then

$$\operatorname{\mathsf{Weyl}}_g\otimes B + \int_{\mathbb{R}^n} \left(A_\infty - A_{GJMS}
ight)_{x_0} \left(
abla^{k-1} U,
abla^{k-1} U
ight) \, dX = 0$$

$$P_{lpha}
ightarrow P_{\infty} = \Delta_g^k + (-1)^{k-1}
abla^{k-1} (A_{\infty}
abla^{k-1}) + lot$$

and $P_g = \Delta_g^k + (-1)^{k-1} \nabla^{k-1} (A_{GJMS} \nabla^{k-1}) + \textit{lot}$ is the conf. invariant GJMS operator

If
$$u_{\alpha} = B_{\alpha} + o(1)$$
 for a bubble $B = (B_{\alpha})_{\alpha}$ where $P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{\star}-2}u_{\alpha}$, then

$$\operatorname{\mathsf{Weyl}}_g\otimes B + \int_{\mathbb{R}^n} \left(A_\infty - A_{GJMS}
ight)_{\mathsf{x}_0} \left(
abla^{k-1} U,
abla^{k-1} U
ight) \, d\mathsf{X} = 0$$

$$\mathcal{P}_{lpha} o \mathcal{P}_{\infty} = \Delta_g^k + (-1)^{k-1}
abla^{k-1} (\mathcal{A}_{\infty}
abla^{k-1}) + \mathit{lot}$$

and $P_g = \Delta_g^k + (-1)^{k-1} \nabla^{k-1} (A_{GJMS} \nabla^{k-1}) + \textit{lot}$ is the conf. invariant GJMS operator

$$\mathsf{Weyl}_{g} \otimes B := (\mathsf{Weyl}_{g}(\mathsf{x}_{0}))_{i\alpha j\beta} \int_{\mathbb{R}^{n}} X^{\alpha} X^{\beta} \partial_{ij} \Delta_{eucl}^{k-1} U\left(\frac{n-2k}{2} U + X' \partial_{l} U\right) \, dX$$

If
$$u_{\alpha} = B_{\alpha} + o(1)$$
 for a bubble $B = (B_{\alpha})_{\alpha}$ where $P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{\star}-2}u_{\alpha}$, then

$$\operatorname{\mathsf{Weyl}}_g\otimes B + \int_{\mathbb{R}^n} \left(A_\infty - A_{GJMS}
ight)_{\mathsf{x}_0} \left(
abla^{k-1} U,
abla^{k-1} U
ight) \, d\mathsf{X} = 0$$

$$P_{lpha}
ightarrow P_{\infty} = \Delta_g^k + (-1)^{k-1}
abla^{k-1} (A_{\infty}
abla^{k-1}) + lot$$

and $P_g = \Delta_g^k + (-1)^{k-1} \nabla^{k-1} (A_{GJMS} \nabla^{k-1}) + \textit{lot}$ is the conf. invariant GJMS operator

 \Rightarrow the second term measures the "distance" of the limiting op. to the geometric op.

$$\mathsf{Weyl}_{g} \otimes B := (\mathsf{Weyl}_{g}(x_{0}))_{i\alpha j\beta} \int_{\mathbb{R}^{n}} X^{\alpha} X^{\beta} \partial_{ij} \Delta_{eucl}^{k-1} U\left(\frac{n-2k}{2} U + X' \partial_{l} U\right) \, dX$$

• It is independent of the choice of U in the definition of the peak,

If
$$u_{\alpha} = B_{\alpha} + o(1)$$
 for a bubble $B = (B_{\alpha})_{\alpha}$ where $P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{\star}-2}u_{\alpha}$, then

$$\operatorname{\mathsf{Weyl}}_g\otimes B + \int_{\mathbb{R}^n} \left(A_\infty - A_{GJMS}
ight)_{\mathsf{x}_0} \left(
abla^{k-1} U,
abla^{k-1} U
ight) \, d\mathsf{X} = 0$$

$$\mathcal{P}_{lpha} o \mathcal{P}_{\infty} = \Delta_g^k + (-1)^{k-1}
abla^{k-1} (\mathcal{A}_{\infty}
abla^{k-1}) + \mathit{lot}$$

and $P_g = \Delta_g^k + (-1)^{k-1} \nabla^{k-1} (A_{GJMS} \nabla^{k-1}) + \textit{lot}$ is the conf. invariant GJMS operator

$$\mathsf{Weyl}_{g} \otimes B := (\mathsf{Weyl}_{g}(x_{0}))_{i\alpha j\beta} \int_{\mathbb{R}^{n}} X^{\alpha} X^{\beta} \partial_{ij} \Delta_{eucl}^{k-1} U\left(\frac{n-2k}{2} U + X' \partial_{l} U\right) \, dX$$

- It is independent of the choice of U in the definition of the peak,
- It is = 0 when Weyl vanishes at x_0

If
$$u_{\alpha} = B_{\alpha} + o(1)$$
 for a bubble $B = (B_{\alpha})_{\alpha}$ where $P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{\star}-2}u_{\alpha}$, then

$$\operatorname{\mathsf{Weyl}}_g\otimes B + \int_{\mathbb{R}^n} \left(A_\infty - A_{GJMS}
ight)_{\mathsf{x}_0} \left(
abla^{k-1} U,
abla^{k-1} U
ight) \, d\mathsf{X} = 0$$

$$\mathcal{P}_{lpha} o \mathcal{P}_{\infty} = \Delta_g^k + (-1)^{k-1}
abla^{k-1} (\mathcal{A}_{\infty}
abla^{k-1}) + \mathit{lot}$$

and $P_g = \Delta_g^k + (-1)^{k-1} \nabla^{k-1} (A_{GJMS} \nabla^{k-1}) + \textit{lot}$ is the conf. invariant GJMS operator

$$\mathsf{Weyl}_{g} \otimes B := (\mathsf{Weyl}_{g}(x_{0}))_{i\alpha j\beta} \int_{\mathbb{R}^{n}} X^{\alpha} X^{\beta} \partial_{ij} \Delta_{eucl}^{k-1} U\left(\frac{n-2k}{2} U + X' \partial_{l} U\right) \, dX$$

- It is independent of the choice of U in the definition of the peak,
- It is = 0 when Weyl vanishes at x_0
- It is = 0 when U is radial

If
$$u_{\alpha} = B_{\alpha} + o(1)$$
 for a bubble $B = (B_{\alpha})_{\alpha}$ where $P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{\star}-2}u_{\alpha}$, then

$$\operatorname{\mathsf{Weyl}}_g\otimes B + \int_{\mathbb{R}^n} \left(A_\infty - A_{GJMS}
ight)_{\mathsf{x}_0} \left(
abla^{k-1} U,
abla^{k-1} U
ight) \, d\mathsf{X} = 0$$

$$\mathcal{P}_{lpha} o \mathcal{P}_{\infty} = \Delta_g^k + (-1)^{k-1}
abla^{k-1} (\mathcal{A}_{\infty}
abla^{k-1}) + \mathit{lot}$$

and $P_g = \Delta_g^k + (-1)^{k-1} \nabla^{k-1} (A_{GJMS} \nabla^{k-1}) + \textit{lot}$ is the conf. invariant GJMS operator

$$\mathsf{Weyl}_{g} \otimes B := (\mathsf{Weyl}_{g}(x_{0}))_{i\alpha j\beta} \int_{\mathbb{R}^{n}} X^{\alpha} X^{\beta} \partial_{ij} \Delta_{eucl}^{k-1} U\left(\frac{n-2k}{2} U + X' \partial_{l} U\right) \, dX$$

- It is independent of the choice of U in the definition of the peak,
- It is = 0 when Weyl vanishes at x₀
- It is = 0 when U is radial
- It is = 0 when $u_{\alpha} > 0$ (since then, U > 0 and is then radial wrt a point)

If
$$u_{\alpha} = B_{\alpha} + o(1)$$
 for a bubble $B = (B_{\alpha})_{\alpha}$ where $P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{\star}-2}u_{\alpha}$, then

$$\operatorname{\mathsf{Weyl}}_g\otimes B + \int_{\mathbb{R}^n} \left(A_\infty - A_{GJMS}
ight)_{x_0} \left(
abla^{k-1} U,
abla^{k-1} U
ight) \, dX = 0$$

$$P_{lpha}
ightarrow P_{\infty} = \Delta_g^k + (-1)^{k-1}
abla^{k-1} (A_{\infty}
abla^{k-1}) + \mathit{lot}$$

and $P_g = \Delta_g^k + (-1)^{k-1} \nabla^{k-1} (A_{GJMS} \nabla^{k-1}) + \textit{lot}$ is the conf. invariant GJMS operator

$$\mathsf{Weyl}_{g} \otimes B := (\mathsf{Weyl}_{g}(x_{0}))_{i\alpha j\beta} \int_{\mathbb{R}^{n}} X^{\alpha} X^{\beta} \partial_{ij} \Delta_{eucl}^{k-1} U\left(\frac{n-2k}{2} U + X' \partial_{l} U\right) \, dX$$

- It is independent of the choice of U in the definition of the peak,
- It is = 0 when Weyl vanishes at x₀
- It is = 0 when U is radial
- It is = 0 when $u_{\alpha} > 0$ (since then, U > 0 and is then radial wrt a point)
- \Rightarrow Weyl_g \otimes B arises only when dealing with sign-changing u_{lpha} in the non-lcf setting

If $u_{\alpha} = B_{\alpha} + o(1)$ for a bubble $B = (B_{\alpha})_{\alpha}$ where $P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{\star}-2}u_{\alpha}$, then $\left(\int_{\mathbb{R}^{n}} |U|^{2^{\star}-2}U \, dX\right) m_{P_{\infty}}(x_{0}) = 0.$

here, $m_{P_{\infty}}(x_0)$ is the mass of the limiting operator $P_{\infty} = \lim_{\alpha \to \infty} P_{\alpha}$,

If
$$u_{\alpha} = B_{\alpha} + o(1)$$
 for a bubble $B = (B_{\alpha})_{\alpha}$ where $P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{\star}-2}u_{\alpha}$, then

$$\left(\int_{\mathbb{R}^{n}} |U|^{2^{\star}-2}U \, dX\right) m_{P_{\infty}}(x_{0}) = 0.$$

$$G_{\infty}(x, x_0) = \frac{c_{n,k}}{d_g(x, x_0)^{n-2k}} + m_{P_{\infty}}(x0) + o(1) \text{ as } x \to x_0,$$

where G_{∞} is the Green's function of P_{∞} , that is

 $P_{\infty}G_{\infty}(\cdot, y) = \delta_y$ weakly in M.

If
$$u_{\alpha} = B_{\alpha} + o(1)$$
 for a bubble $B = (B_{\alpha})_{\alpha}$ where $P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{\star}-2}u_{\alpha}$, then

$$\left(\int_{\mathbb{R}^{n}} |U|^{2^{\star}-2}U \, dX\right) m_{P_{\infty}}(x_{0}) = 0.$$

$$G_{\infty}(x, x_0) = rac{c_{n,k}}{d_g(x, x_0)^{n-2k}} + m_{P_{\infty}}(x0) + o(1) \text{ as } x o x_0,$$

where \mathcal{G}_∞ is the Green's function of \mathcal{P}_∞ , that is

$$P_{\infty}G_{\infty}(\cdot, y) = \delta_y$$
 weakly in M .

What about $\int_{\mathbb{R}^n} |U|^{2^*-2} U \, dX$?

If
$$u_{\alpha} = B_{\alpha} + o(1)$$
 for a bubble $B = (B_{\alpha})_{\alpha}$ where $P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{\star}-2}u_{\alpha}$, then

$$\left(\int_{\mathbb{R}^{n}} |U|^{2^{\star}-2}U \, dX\right) m_{P_{\infty}}(x_{0}) = 0.$$

$$G_{\infty}(x, x_0) = rac{c_{n,k}}{d_g(x, x_0)^{n-2k}} + m_{P_{\infty}}(x0) + o(1) \text{ as } x o x_0,$$

where \mathcal{G}_∞ is the Green's function of \mathcal{P}_∞ , that is

$$P_{\infty}G_{\infty}(\cdot, y) = \delta_y$$
 weakly in M .

What about $\int_{\mathbb{R}^n} |U|^{2^\star-2} U \, dX$? Can it vanish? It is a possibility... Indeed

$$\lim_{|X|\to\infty}|X|^{n-2k}U(X)=C_{n,k}\int_{\mathbb{R}^n}|U|^{2^\star-2}U\,dX \text{ for some } C_{n,k}>0.$$

therefore

If
$$u_{\alpha} = B_{\alpha} + o(1)$$
 for a bubble $B = (B_{\alpha})_{\alpha}$ where $P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{\star}-2}u_{\alpha}$, then

$$\left(\int_{\mathbb{R}^{n}} |U|^{2^{\star}-2}U \, dX\right) m_{P_{\infty}}(x_{0}) = 0.$$

$$G_{\infty}(x, x_0) = rac{c_{n,k}}{d_g(x, x_0)^{n-2k}} + m_{P_{\infty}}(x0) + o(1) \text{ as } x o x_0,$$

where \textit{G}_{∞} is the Green's function of $\textit{P}_{\infty},$ that is

$$P_{\infty}G_{\infty}(\cdot, y) = \delta_y$$
 weakly in M .

What about $\int_{\mathbb{R}^n} |U|^{2^\star-2} U \, dX$? Can it vanish? It is a possibility... Indeed

$$\lim_{|X|\to\infty}|X|^{n-2k}U(X)=C_{n,k}\int_{\mathbb{R}^n}|U|^{2^{\star}-2}U\,dX \text{ for some } C_{n,k}>0.$$

therefore

$$\int_{\mathbb{R}^n} |U|^{2^\star-2} U \, dX = 0 \, \Leftrightarrow \, U(x) = o(|x|^{2k-n}) \text{ as } |x| \to \infty.$$

This is possible only for some sign-changing U, but not all of them.

$$\left\{\begin{array}{l} P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{\star}-2}u_{\alpha} \text{ in } M\\ + \text{ one peak Blow-up}\end{array}\right\} \Rightarrow$$

$$\left\{\begin{array}{l} Weyl_{g} \otimes B + \int_{\mathbb{R}^{n}} (A_{\infty} - A_{GJMS})_{x_{0}} \left(\nabla^{k-1}U, \nabla^{k-1}U\right) \, dX = 0 \quad \text{ if } n > 2k+2\\ \left(\int_{\mathbb{R}^{n}} |U|^{2^{\star}-2}U \, dX\right) m_{P_{\infty}}(x_{0}) = 0 \quad \text{ if } n = 2k+1\end{array}\right\}$$

$$\begin{cases} P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{\star}-2}u_{\alpha} \text{ in } M \\ + \text{ one peak } Blow-up \end{cases} \Rightarrow$$

$$\begin{cases} Weyl_{g} \otimes B + \int_{\mathbb{R}^{n}} (A_{\infty} - A_{GJMS})_{x_{0}} (\nabla^{k-1}U, \nabla^{k-1}U) \ dX = 0 \quad \text{ if } n > 2k+2 \\ \left(\int_{\mathbb{R}^{n}} |U|^{2^{\star}-2}U \ dX \right) m_{P_{\infty}}(x_{0}) = 0 \qquad \text{ if } n = 2k+1 \end{cases}$$

• For k = 1, $u_{\alpha} > 0$, this theorem was proved by Druet, after earlier contributions by Z.-C.Han, Hebey-Vaugon.

$$\left\{\begin{array}{l} P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{*}-2}u_{\alpha} \text{ in } M\\ + \text{ one peak } Blow-up \end{array}\right\} \Rightarrow$$

$$Weyl_{g} \otimes B + \int_{\mathbb{R}^{n}} \left(A_{\infty} - A_{GJMS}\right)_{x_{0}} \left(\nabla^{k-1}U, \nabla^{k-1}U\right) \, dX = 0 \quad \text{ if } n > 2k+2\\ \left(\int_{\mathbb{R}^{n}} |U|^{2^{*}-2}U \, dX\right) m_{P_{\infty}}(x_{0}) = 0 \qquad \text{ if } n = 2k+1 \end{array}\right\}$$

- For k = 1, $u_{\alpha} > 0$, this theorem was proved by Druet, after earlier contributions by Z.-C.Han, Hebey-Vaugon.
- For 4th order operator ($P = \Delta_g^2 + lot$) and:
 - Hebey-R.-Wen: partial results when $P = (-\Delta_g + lot) \circ (-\Delta_g + lot)$ and lcf
 - Gursky-Malchiodi: for the geometric operator P = Paneitz, $(Pu \ge 0 \text{ in } M \Rightarrow u \ge 0)$. No local version.
 - Li-Xiong: compactness when P = Paneitz, $u_{\alpha} > 0$ and Green's function is > 0.

(日) (部) (注) (注) (三)

$$\left\{\begin{array}{l} P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{\star}-2}u_{\alpha} \text{ in } M\\ + \text{ one peak Blow-up} \end{array}\right\} \Rightarrow$$

$$Weyl_{g} \otimes B + \int_{\mathbb{R}^{n}} (A_{\infty} - A_{GJMS})_{x_{0}} \left(\nabla^{k-1}U, \nabla^{k-1}U\right) dX = 0 \quad \text{ if } n > 2k+2\\ \left(\int_{\mathbb{R}^{n}} |U|^{2^{\star}-2}U dX\right) m_{P_{\infty}}(x_{0}) = 0 \qquad \text{ if } n = 2k+1 \end{array}\right\}$$

- For k = 1, $u_{\alpha} > 0$, this theorem was proved by Druet, after earlier contributions by Z.-C.Han, Hebey-Vaugon.
- For 4th order operator ($P = \Delta_g^2 + lot$) and:
 - Hebey-R.-Wen: partial results when $P = (-\Delta_g + lot) \circ (-\Delta_g + lot)$ and lcf
 - Gursky-Malchiodi: for the geometric operator P = Paneitz, $(Pu \ge 0 \text{ in } M \Rightarrow u \ge 0)$. No local version.
 - Li-Xiong: compactness when P = Paneitz, $u_{\alpha} > 0$ and Green's function is > 0.

The key is to get the pointwise control.

$$\begin{cases} P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{\star}-2}u_{\alpha} \text{ in } M\\ + \text{ one peak Blow-up} \end{cases} \Rightarrow |u_{\alpha}(x)| \leq C \left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2} + d_{g}(x, x_{\alpha})^{2}}\right)^{\frac{n-2\kappa}{2}} \end{cases}$$

where $\mu_{\alpha}^{-\frac{n-2\kappa}{2}} = |u_{\alpha}(x_{\alpha})| = \sup_{M} |u_{\alpha}|.$

~ 1

$$\begin{cases} P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{\star}-2}u_{\alpha} \text{ in } M\\ + \text{ one peak Blow-up} \end{cases} \Rightarrow |u_{\alpha}(x)| \leq C \left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2} + d_{g}(x, x_{\alpha})^{2}}\right)^{\frac{n-2\kappa}{2}} \end{cases}$$

where $\mu_{\alpha}^{-\frac{n-2\kappa}{2}} = |u_{\alpha}(x_{\alpha})| = \sup_{M} |u_{\alpha}|.$

• For k = 1, $u_{\alpha} > 0$, this theorem was proved by Druet-R. after earlier contributions by Z.-C.Han, Hebey-Vaugon.

$$\begin{cases} P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{\star}-2}u_{\alpha} \text{ in } M\\ + \text{ one peak Blow-up} \end{cases} \Rightarrow |u_{\alpha}(x)| \leq C \left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2} + d_{g}(x, x_{\alpha})^{2}}\right)^{\frac{n-2\kappa}{2}} \end{cases}$$

where $\mu_{\alpha}^{-\frac{n-2\kappa}{2}} = |u_{\alpha}(x_{\alpha})| = \sup_{M} |u_{\alpha}|.$

- For k = 1, $u_{\alpha} > 0$, this theorem was proved by Druet-R. after earlier contributions by Z.-C.Han, Hebey-Vaugon.
- The proofs are specific to 2nd order elliptic operators via the maximum principle (essentially). Not valid for k > 1!!

w

$$\left\{\begin{array}{l} P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{\star}-2}u_{\alpha} \text{ in } M\\ + \text{ one peak Blow-up}\end{array}\right\} \Rightarrow |u_{\alpha}(x)| \leq C\left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2} + d_{g}(x, x_{\alpha})^{2}}\right)^{\frac{n-2k}{2}}$$

here $\mu_{\alpha}^{-\frac{n-2k}{2}} = |u_{\alpha}(x_{\alpha})| = \sup_{M}|u_{\alpha}|.$

- For $\mathbf{k} = \mathbf{1}$, $u_{\alpha} > \mathbf{0}$, this theorem was proved by Druet-R. after earlier contributions by Z.-C.Han, Hebey-Vaugon.
- The proofs are specific to 2nd order elliptic operators via the maximum principle (essentially). Not valid for k > 1!!
- For 4th order operator ($P = \Delta_{\sigma}^2 + lot$):

 - Hebey-R.-Wen: partial control when P = (Δ_g + lot) (Δ_g + lot)
 Li-Xiong: pointwise control for P =Paneitz, u_α > 0 and Green's function is > 0.

wl

$$\left\{\begin{array}{l} P_{\alpha}u_{\alpha} = |u_{\alpha}|^{2^{*}-2}u_{\alpha} \text{ in } M\\ + \text{ one peak Blow-up}\end{array}\right\} \Rightarrow |u_{\alpha}(x)| \leq C\left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2} + d_{g}(x, x_{\alpha})^{2}}\right)^{\frac{n-2k}{2}}$$

- For $\mathbf{k} = \mathbf{1}$, $u_{\alpha} > \mathbf{0}$, this theorem was proved by Druet-R. after earlier contributions by Z.-C.Han, Hebey-Vaugon.
- The proofs are specific to 2nd order elliptic operators via the maximum principle (essentially). Not valid for k > 1!!
- For 4th order operator ($P = \Delta_{\sigma}^2 + lot$):

 - Hebey-R.-Wen: partial control when P = (Δ_g + lot) (Δ_g + lot)
 Li-Xiong: pointwise control for P =Paneitz, u_α > 0 and Green's function is > 0.
- Here: we want a method in analysis that does not require geometric assumptions or sign assumptions... because it simply more natural.
- The main difficulty: how to bypass the maximum principle?

(日) (部) (注) (注) (三)

Proof. Step 1: rescaling

$$\Delta_{\xi}^{k}u_{lpha}+...=u_{lpha}^{2^{\star}-1},\,\,u_{lpha}>0$$
 (for simplification)

$$\Delta_{\xi}^{k}u_{\alpha} + ... = u_{\alpha}^{2^{\star}-1}, \ u_{\alpha} > 0$$
 (for simplification)

• Set
$$\mu_{\alpha}^{-\frac{n-2k}{2}} = |u_{\alpha}(x_{\alpha})| = \sup_{M} |u_{\alpha}|$$
 and define (Euclidean for simplicity)
 $\frac{n-2k}{2}$

$$ilde{u}_{lpha}(X):=\mu_{lpha}^{rac{1}{2}}u_{lpha}(x_{lpha}+\mu_{lpha}X) ext{ for } X\in \mathbb{R}^n$$

$$\Delta^k_{\xi} u_{lpha} + ... = u_{lpha}^{2^{\star}-1}, \, \, u_{lpha} > 0 \, \, ({
m for simplification})$$

• Set
$$\mu_{\alpha}^{-\frac{n-2k}{2}} = |u_{\alpha}(x_{\alpha})| = \sup_{M} |u_{\alpha}|$$
 and define (Euclidean for simplicity)
 $\tilde{u}_{\alpha}(X) := \mu_{\alpha}^{\frac{n-2k}{2}} u_{\alpha}(x_{\alpha} + \mu_{\alpha}X)$ for $X \in \mathbb{R}^{n}$

• The pde rewrites

$$\left\{\begin{array}{c}\Delta_{\xi}^{k}\tilde{u}_{\alpha}+\mu_{\alpha}\cdot(...)=\tilde{u}_{\alpha}^{2^{\star}-1}\text{ in }\mathbb{R}^{n}\\0<\tilde{u}_{\alpha}\leq\tilde{u}_{\alpha}(0)=1\end{array}\right\}$$

$$\Delta_{\xi}^{k} u_{\alpha} + ... = u_{\alpha}^{2^{\star}-1}, \ u_{\alpha} > 0$$
 (for simplification)

• The pde rewrites

$$\left\{\begin{array}{c}\Delta_{\xi}^{k}\tilde{u}_{\alpha}+\mu_{\alpha}\cdot(...)=\tilde{u}_{\alpha}^{2^{\star}-1}\text{ in }\mathbb{R}^{n}\\0<\tilde{u}_{\alpha}\leq\tilde{u}_{\alpha}(0)=1\end{array}\right\}$$

• Elliptic regularity:

$$\tilde{u}_{\alpha} \to U \text{ in } C^{2k}_{loc}(\mathbb{R}^n), \left\{ \begin{array}{c} \Delta^k_{\xi} U = U^{2^{\star}-1} \text{ in } \mathbb{R}^n \\ 0 \le U \le U(0) = 1 \end{array} \right\} \Rightarrow U(X) = \left(\frac{1}{1 + \alpha_{n,k}|x|^2}\right)^{\frac{n-2\kappa}{2}}$$

$$\Delta_{\xi}^{k} u_{\alpha} + ... = u_{\alpha}^{2^{\star}-1}, \ u_{\alpha} > 0$$
 (for simplification)

• The pde rewrites

$$\left\{\begin{array}{c}\Delta_{\xi}^{k}\tilde{u}_{\alpha}+\mu_{\alpha}\cdot(...)=\tilde{u}_{\alpha}^{2^{\star}-1}\text{ in }\mathbb{R}^{n}\\0<\tilde{u}_{\alpha}\leq\tilde{u}_{\alpha}(0)=1\end{array}\right\}$$

• Elliptic regularity:

$$\tilde{u}_{\alpha} \to U \text{ in } C^{2k}_{loc}(\mathbb{R}^n), \left\{ \begin{array}{c} \Delta^k_{\xi} U = U^{2^{\star}-1} \text{ in } \mathbb{R}^n\\ 0 \le U \le U(0) = 1 \end{array} \right\} \Rightarrow U(X) = \left(\frac{1}{1 + \alpha_{n,k}|x|^2}\right)^{\frac{n-2\kappa}{2}}$$

• Scale back:

$$u_{\alpha}(x) \simeq \left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2} + d_{g}(x, x_{\alpha})^{2}}\right)^{\frac{n-2k}{2}} \text{ in } B(x_{\alpha}, R\mu_{\alpha}) \qquad (*)$$

$$\Delta_{\xi}^{k} u_{\alpha} + ... = u_{\alpha}^{2^{\star}-1}, \ u_{\alpha} > 0$$
 (for simplification)

• The pde rewrites

$$\left\{\begin{array}{c}\Delta_{\xi}^{k}\tilde{u}_{\alpha}+\mu_{\alpha}\cdot(...)=\tilde{u}_{\alpha}^{2^{\star}-1}\text{ in }\mathbb{R}^{n}\\0<\tilde{u}_{\alpha}\leq\tilde{u}_{\alpha}(0)=1\end{array}\right\}$$

• Elliptic regularity:

$$\tilde{u}_{\alpha} \to U \text{ in } C^{2k}_{loc}(\mathbb{R}^n), \left\{ \begin{array}{c} \Delta^k_{\xi} U = U^{2^{\star}-1} \text{ in } \mathbb{R}^n\\ 0 \le U \le U(0) = 1 \end{array} \right\} \Rightarrow U(X) = \left(\frac{1}{1 + \alpha_{n,k}|x|^2}\right)^{\frac{n-2\kappa}{2}}$$

• Scale back:

$$u_{\alpha}(x) \simeq \left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2} + d_{g}(x, x_{\alpha})^{2}}\right)^{\frac{n-2k}{2}} \text{ in } B(x_{\alpha}, R\mu_{\alpha}) \qquad (*)$$

$$\Delta_{\xi}^{k}u_{lpha}+...=u_{lpha}^{2^{\star}-1},\ u_{lpha}>0$$
 (for simplification)

• The pde rewrites

$$\left\{\begin{array}{c}\Delta_{\xi}^{k}\tilde{u}_{\alpha}+\mu_{\alpha}\cdot(...)=\tilde{u}_{\alpha}^{2^{\star}-1}\text{ in }\mathbb{R}^{n}\\0<\tilde{u}_{\alpha}\leq\tilde{u}_{\alpha}(0)=1\end{array}\right\}$$

• Elliptic regularity:

$$\tilde{u}_{\alpha} \to U \text{ in } C^{2k}_{loc}(\mathbb{R}^n), \left\{ \begin{array}{c} \Delta_{\xi}^k U = U^{2^{\star}-1} \text{ in } \mathbb{R}^n\\ 0 \le U \le U(0) = 1 \end{array} \right\} \Rightarrow U(X) = \left(\frac{1}{1 + \alpha_{n,k}|x|^2}\right)^{\frac{n-2\kappa}{2}}$$

• Scale back:

$$u_{lpha}(x) \simeq \left(rac{\mu_{lpha}}{\mu_{lpha}^2 + d_g(x, x_{lpha})^2}
ight)^{rac{n-2k}{2}} ext{ in } B(x_{lpha}, R\mu_{lpha}) \tag{(*)}$$

Objective: We want (*) on all the manifold M_{\downarrow} , (=) , (=) , (=)

11 / 20

• Write $P_{\alpha}u_{\alpha} = u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$P_{\alpha}u_{\alpha} = V_{\alpha}u_{\alpha}$$
 with $V_{\alpha} = u_{\alpha}^{2^{\star}-2}$

• Write $P_{\alpha}u_{\alpha} = u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$P_{\alpha}u_{\alpha} = V_{\alpha}u_{\alpha}$$
 with $V_{\alpha} = u_{\alpha}^{2^{\star}-2}$

• Let ${\it G}_{lpha}$ be the Green's function for ${\it P}_{lpha}-{\it V}_{lpha}$

• Write $P_{\alpha}u_{\alpha} = u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$P_{\alpha}u_{\alpha} = V_{\alpha}u_{\alpha}$$
 with $V_{\alpha} = u_{\alpha}^{2^{\star}-2}$

- Let G_{α} be the Green's function for $P_{\alpha} V_{\alpha}$
- For $x \in M$ s.t $d(x, x_{\alpha}) > 2R\mu_{\alpha}$, write Green's representation on $M B(x_{\alpha}, R\mu_{\alpha})$:

$$u_{\alpha}(x) = \int_{\partial B(x_{\alpha}, R\mu_{\alpha})} \sum_{i < 2k} \nabla^{i} G_{\alpha}(x, \cdot) \star \nabla^{2k-1-i} u_{\alpha} \, dv_{g}$$

• Write $P_{\alpha}u_{\alpha} = u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$P_{\alpha}u_{\alpha} = V_{\alpha}u_{\alpha}$$
 with $V_{\alpha} = u_{\alpha}^{2^{\star}-2}$

- Let G_{α} be the Green's function for $P_{\alpha} V_{\alpha}$
- For $x \in M$ s.t $d(x, x_{\alpha}) > 2R\mu_{\alpha}$, write Green's representation on $M B(x_{\alpha}, R\mu_{\alpha})$:

$$u_{\alpha}(x) = \int_{\partial B(x_{\alpha}, R\mu_{\alpha})} \sum_{i < 2k} \nabla^{i} G_{\alpha}(x, \cdot) \star \nabla^{2k-1-i} u_{\alpha} \, dv_{g}$$

• We know u_{α} on the boundary: $u_{\alpha}(z) \simeq \mu_{\alpha}^{-\frac{n-2k}{2}}$, similar for derivatives.

• Write $P_{\alpha}u_{\alpha} = u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$P_{\alpha}u_{\alpha} = V_{\alpha}u_{\alpha}$$
 with $V_{\alpha} = u_{\alpha}^{2^{\star}-2}$

- Let G_{α} be the Green's function for $P_{\alpha} V_{\alpha}$
- For $x \in M$ s.t $d(x, x_{\alpha}) > 2R\mu_{\alpha}$, write Green's representation on $M B(x_{\alpha}, R\mu_{\alpha})$:

$$u_{\alpha}(x) = \int_{\partial B(x_{\alpha}, R\mu_{\alpha})} \sum_{i < 2k} \nabla^{i} G_{\alpha}(x, \cdot) \star \nabla^{2k-1-i} u_{\alpha} \, dv_{g}$$

• We know u_{α} on the boundary: $u_{\alpha}(z) \simeq \mu_{\alpha}^{-\frac{n-2k}{2}}$, similar for derivatives. • If G_{α} has the expected behavior

 $|G_{\alpha}(x,z)| \simeq d_g(x,z)^{2k-n} \simeq d_g(x,x_{\alpha})^{2k-n}$ for $z \in \partial B(x_{\alpha},R\mu_{\alpha})$

• Write $P_{\alpha}u_{\alpha} = u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$P_{\alpha}u_{\alpha} = V_{\alpha}u_{\alpha}$$
 with $V_{\alpha} = u_{\alpha}^{2^{\star}-2}$

- Let G_{α} be the Green's function for $P_{\alpha} V_{\alpha}$
- For $x \in M$ s.t $d(x, x_{\alpha}) > 2R\mu_{\alpha}$, write Green's representation on $M B(x_{\alpha}, R\mu_{\alpha})$:

$$u_{\alpha}(x) = \int_{\partial B(x_{\alpha}, R\mu_{\alpha})} \sum_{i < 2k} \nabla^{i} G_{\alpha}(x, \cdot) \star \nabla^{2k-1-i} u_{\alpha} \, dv_{g}$$

• We know u_{α} on the boundary: $u_{\alpha}(z) \simeq \mu_{\alpha}^{-\frac{n-2k}{2}}$, similar for derivatives. • If G_{α} has the expected behavior

$$|G_{\alpha}(x,z)| \simeq d_g(x,z)^{2k-n} \simeq d_g(x,x_{\alpha})^{2k-n}$$
 for $z \in \partial B(x_{\alpha},R\mu_{\alpha})$

Then

$$|u_{\alpha}(x)| \leq C \sum_{i < 2k} \mu_{\alpha}^{n-1} d_{g}(x, x_{\alpha})^{2k-n-i} \mu_{\alpha}^{-\frac{n-2k}{2}-(2k-1-i)} \leq C \frac{\mu_{\alpha}^{\frac{n-2k}{2}}}{d_{g}(x, x_{\alpha})^{n-2k}}$$

• Write $P_{\alpha}u_{\alpha} = u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$P_{\alpha}u_{\alpha} = V_{\alpha}u_{\alpha}$$
 with $V_{\alpha} = u_{\alpha}^{2^{\star}-2}$

- Let G_{α} be the Green's function for $P_{\alpha} V_{\alpha}$
- For $x \in M$ s.t $d(x, x_{\alpha}) > 2R\mu_{\alpha}$, write Green's representation on $M B(x_{\alpha}, R\mu_{\alpha})$:

$$u_{\alpha}(x) = \int_{\partial B(x_{\alpha}, R\mu_{\alpha})} \sum_{i < 2k} \nabla^{i} G_{\alpha}(x, \cdot) \star \nabla^{2k-1-i} u_{\alpha} \, dv_{g}$$

• We know u_{α} on the boundary: $u_{\alpha}(z) \simeq \mu_{\alpha}^{-\frac{n-2k}{2}}$, similar for derivatives. • If G_{α} has the expected behavior

$$|\mathsf{G}_{\alpha}(x,z)| \simeq \mathsf{d}_{\mathsf{g}}(x,z)^{2k-n} \simeq \mathsf{d}_{\mathsf{g}}(x,x_{\alpha})^{2k-n} ext{ for } z \in \partial B(x_{\alpha},R\mu_{\alpha})$$

Then

$$|u_{\alpha}(x)| \leq C \sum_{i < 2k} \mu_{\alpha}^{n-1} d_{g}(x, x_{\alpha})^{2k-n-i} \mu_{\alpha}^{-\frac{n-2k}{2}-(2k-1-i)} \leq C \frac{\mu_{\alpha}^{\frac{n-2k}{2}}}{d_{g}(x, x_{\alpha})^{n-2k}}$$

and then

$$u_{\alpha}(x) \leq C \left(\frac{\mu_{\alpha}}{\mu_{\alpha}^{2} + d_{g}(x, x_{\alpha})^{2}}\right)^{\frac{n-2k}{2}} \text{ in } M - B(x_{\alpha}, 2R\mu_{\alpha}): \text{ DONE!}$$

12 / 20

• Write $P_{\alpha}u_{\alpha} = u_{\alpha}^{2^{*}-1}$ as a linear problem

$$P_{\alpha}u_{\alpha} = V_{\alpha}u_{\alpha}$$
 with $V_{\alpha} = u_{\alpha}^{2^{\star}-2}$

- Let G_{α} be the Green's function for $P_{\alpha} V_{\alpha}$
- For $x \in M$ s.t $d(x, x_{\alpha}) > 2R\mu_{\alpha}$, write Green's representation on $M B(x_{\alpha}, R\mu_{\alpha})$:

$$u_{\alpha}(x) = \int_{\partial B(x_{\alpha}, R\mu_{\alpha})} \sum_{i < 2k} \nabla^{i} G_{\alpha}(x, \cdot) \star \nabla^{2k-1-i} u_{\alpha} \, dv_{g}$$

• We know u_{α} on the boundary: $u_{\alpha}(z) \simeq \mu_{\alpha}^{-\frac{n-2k}{2}}$, similar for derivatives. • If G_{α} has the expected behavior

$$|\mathsf{G}_{\alpha}(\mathsf{x},\mathsf{z})| \simeq \mathsf{d}_{\mathsf{g}}(\mathsf{x},\mathsf{z})^{2k-n} \simeq \mathsf{d}_{\mathsf{g}}(\mathsf{x},\mathsf{x}_{\alpha})^{2k-n} ext{ for } \mathsf{z} \in \partial B(\mathsf{x}_{\alpha},\mathsf{R}\mu_{\alpha})$$

Then

$$|u_{\alpha}(x)| \leq C \sum_{i < 2k} \mu_{\alpha}^{n-1} d_{g}(x, x_{\alpha})^{2k-n-i} \mu_{\alpha}^{-\frac{n-2k}{2}-(2k-1-i)} \leq C \frac{\mu_{\alpha}^{\frac{n-2k}{2}}}{d_{g}(x, x_{\alpha})^{n-2k}}$$

and then

$$u_{\alpha}(x) \leq C\left(rac{\mu_{\alpha}}{\mu_{\alpha}^2 + d_g(x, x_{\alpha})^2}
ight)^{rac{n-2k}{2}}$$
 in $M - B(x_{\alpha}, 2R\mu_{\alpha})$: DONE!

Except that this does not work...

12 / 20

• Write $P_{\alpha}u_{\alpha} = u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$P_{\alpha}u_{\alpha} = V_{\alpha}u_{\alpha}$$
 with $V_{\alpha} = u_{\alpha}^{2^{\star}-2}$

- Let ${\cal G}_{lpha}$ be the Green's function for ${\cal P}_{lpha}-{\cal V}_{lpha}$
- For $x \in M$ s.t. $d(x, x_{\alpha}) > 2R\mu_{\alpha}$, write Green's representation:

$$u_{\alpha}(x) = \int_{\partial B(x_{\alpha}, R\mu_{\alpha})} \sum_{i < 2k} \nabla^{i} \mathcal{G}_{\alpha}(x, \cdot) \star \nabla^{2k-1-i} u_{\alpha} \, dv_{g}$$

- We know u_{lpha} on the boundary: $u_{lpha}(z)\simeq \mu_{lpha}^{-rac{n-2k}{2}}$, similar for derivatives
- If G_{α} has the expected behavior:

• Write $P_{\alpha}u_{\alpha} = u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$P_{\alpha}u_{\alpha} = V_{\alpha}u_{\alpha}$$
 with $V_{\alpha} = u_{\alpha}^{2^{\star}-2}$

- Let ${\cal G}_{lpha}$ be the Green's function for ${\cal P}_{lpha}-{\cal V}_{lpha}$
- For $x \in M$ s.t. $d(x, x_{\alpha}) > 2R\mu_{\alpha}$, write Green's representation:

$$u_{\alpha}(x) = \int_{\partial B(x_{\alpha}, R\mu_{\alpha})} \sum_{i < 2k} \nabla^{i} \mathcal{G}_{\alpha}(x, \cdot) \star \nabla^{2k-1-i} u_{\alpha} \, dv_{g}$$

- We know u_{lpha} on the boundary: $u_{lpha}(z)\simeq \mu_{lpha}^{-rac{n-2k}{2}}$, similar for derivatives
- If G_{α} has the expected behavior: NO its doesn't!!!

$$|G_{\alpha}(x,z)| \not\simeq d_g(x,z)^{2k-n} \simeq d_g(x,x_{\alpha})^{2k-n}$$
 for $z \in \partial B(x_{\alpha},R\mu_{\alpha})$

• Write $P_{\alpha}u_{\alpha} = u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$P_{\alpha}u_{\alpha} = V_{\alpha}u_{\alpha}$$
 with $V_{\alpha} = u_{\alpha}^{2^{\star}-2}$

- Let ${\cal G}_{lpha}$ be the Green's function for ${\cal P}_{lpha}-{\cal V}_{lpha}$
- For $x \in M$ s.t. $d(x, x_{\alpha}) > 2R\mu_{\alpha}$, write Green's representation:

$$u_{\alpha}(x) = \int_{\partial B(x_{\alpha}, R\mu_{\alpha})} \sum_{i < 2k} \nabla^{i} G_{\alpha}(x, \cdot) \star \nabla^{2k-1-i} u_{\alpha} \, dv_{g}$$

- We know u_{lpha} on the boundary: $u_{lpha}(z)\simeq \mu_{lpha}^{-rac{n-2k}{2}}$, similar for derivatives
- If G_{α} has the expected behavior: NO its doesn't!!!

$$|G_{\alpha}(x,z)| \not\simeq d_g(x,z)^{2k-n} \simeq d_g(x,x_{\alpha})^{2k-n}$$
 for $z \in \partial B(x_{\alpha},R\mu_{\alpha})$

SO, we must get a reasonable control for the Green's function of

$$P_{\alpha} - V_{\alpha} = P_{\alpha} - u_{\alpha}^{2^{\star}-2}$$

with a potential that is blowing-up.

• Write $P_{\alpha}u_{\alpha} = u_{\alpha}^{2^{\star}-1}$ as a linear problem

$$P_{\alpha}u_{\alpha} = V_{\alpha}u_{\alpha}$$
 with $V_{\alpha} = u_{\alpha}^{2^{\star}-2}$

- Let ${\cal G}_{lpha}$ be the Green's function for ${\cal P}_{lpha}-{\cal V}_{lpha}$
- For $x \in M$ s.t. $d(x, x_{\alpha}) > 2R\mu_{\alpha}$, write Green's representation:

$$u_{\alpha}(x) = \int_{\partial B(x_{\alpha}, R\mu_{\alpha})} \sum_{i < 2k} \nabla^{i} G_{\alpha}(x, \cdot) \star \nabla^{2k-1-i} u_{\alpha} \, dv_{g}$$

- We know u_{lpha} on the boundary: $u_{lpha}(z)\simeq \mu_{lpha}^{-rac{n-2k}{2}}$, similar for derivatives
- If G_{α} has the expected behavior: NO its doesn't!!!

$$|G_{\alpha}(x,z)| \not\simeq d_g(x,z)^{2k-n} \simeq d_g(x,x_{\alpha})^{2k-n}$$
 for $z \in \partial B(x_{\alpha},R\mu_{\alpha})$

SO, we must get a reasonable control for the Green's function of

$$P_{\alpha} - V_{\alpha} = P_{\alpha} - u_{\alpha}^{2^{\star}-2}$$

with a potential that is blowing-up. Fortunately, this is a very particular potential.

Let us go back to the invariance. A paramount quantity here is

$$w_{\alpha}(x) := d_g(x, x_{\alpha})^{\frac{n-2k}{2}} u_{\alpha}(x) \tag{(*)}$$

Let us go back to the invariance. A paramount quantity here is

$$w_{\alpha}(x) := d_g(x, x_{\alpha})^{\frac{n-2k}{2}} u_{\alpha}(x) \tag{(\star)}$$

originating in Schoen-Zhang.

Why? For a function $U : \mathbb{R}^n \to \mathbb{R}$, recall $U_{\mu,x_0}(x) := \mu^{-\frac{n-2k}{2}} U\left(\frac{x-x_0}{\mu}\right)$.

Let us go back to the invariance. A paramount quantity here is

$$w_{\alpha}(x) := d_g(x, x_{\alpha})^{\frac{n-2k}{2}} u_{\alpha}(x) \tag{(*)}$$

originating in Schoen-Zhang.

Why? For a function $U : \mathbb{R}^n \to \mathbb{R}$, recall $U_{\mu,x_0}(x) := \mu^{-\frac{n-2k}{2}} U\left(\frac{x-x_0}{\mu}\right)$. Then

 $|x - x_0|^{\frac{n-2k}{2}}|U_{\mu,x_0}(x)| = |X|^{\frac{n-2k}{2}}|U(X)|$ with $x = x_0 + \mu_{\alpha}X$

Let us go back to the invariance. A paramount quantity here is

$$w_{\alpha}(x) := d_{g}(x, x_{\alpha})^{\frac{n-2k}{2}} u_{\alpha}(x) \qquad (\star)$$

originating in Schoen-Zhang.

Why? For a function $U: \mathbb{R}^n \to \mathbb{R}$, recall $U_{\mu,x_0}(x) := \mu^{-\frac{n-2k}{2}} U\left(\frac{x-x_0}{\mu}\right)$. Then

$$\begin{aligned} |x - x_0|^{\frac{n-2k}{2}} |U_{\mu, x_0}(x)| &= |X|^{\frac{n-2k}{2}} |U(X)| \text{ with } x = x_0 + \mu_{\alpha} X \\ &= C \left(\frac{|X|}{1 + |X|^2}\right)^{\frac{n-2k}{2}} : \end{aligned}$$

Let us go back to the invariance. A paramount quantity here is

$$w_{\alpha}(x) := d_{g}(x, x_{\alpha})^{\frac{n-2k}{2}} u_{\alpha}(x) \qquad (\star)$$

originating in Schoen-Zhang.

Why? For a function $U: \mathbb{R}^n \to \mathbb{R}$, recall $U_{\mu,x_0}(x) := \mu^{-\frac{n-2k}{2}} U\left(\frac{x-x_0}{\mu}\right)$. Then

$$\begin{aligned} |x - x_0|^{\frac{n-2k}{2}} |U_{\mu, x_0}(x)| &= |X|^{\frac{n-2k}{2}} |U(X)| \text{ with } x = x_0 + \mu_{\alpha} X \\ &= C \left(\frac{|X|}{1 + |X|^2}\right)^{\frac{n-2k}{2}} : \text{ Bounded and } <<1 \text{ for } |X| >>1 \end{aligned}$$

So, more or less, the quantity (\star) is preserved after the change of function.

Let us go back to the invariance. A paramount quantity here is

$$w_{\alpha}(x) := d_g(x, x_{\alpha})^{\frac{n-2k}{2}} u_{\alpha}(x) \tag{(\star)}$$

originating in Schoen-Zhang.

Why? For a function $U : \mathbb{R}^n \to \mathbb{R}$, recall $U_{\mu,x_0}(x) := \mu^{-\frac{n-2k}{2}} U\left(\frac{x-x_0}{\mu}\right)$. Then

$$\begin{aligned} |x - x_0|^{\frac{n-2k}{2}} |U_{\mu, x_0}(x)| &= |X|^{\frac{n-2k}{2}} |U(X)| \text{ with } x = x_0 + \mu_{\alpha} X \\ &= C \left(\frac{|X|}{1 + |X|^2}\right)^{\frac{n-2k}{2}} : \text{ Bounded and } <<1 \text{ for } |X| >>1 \end{aligned}$$

So, more or less, the quantity (\star) is preserved after the change of function.

• Claim 1: (w_{α}) is bounded:

Let us go back to the invariance. A paramount quantity here is

$$w_{\alpha}(x) := d_g(x, x_{\alpha})^{\frac{n-2k}{2}} u_{\alpha}(x) \tag{(\star)}$$

originating in Schoen-Zhang.

Why? For a function $U : \mathbb{R}^n \to \mathbb{R}$, recall $U_{\mu,x_0}(x) := \mu^{-\frac{n-2k}{2}} U\left(\frac{x-x_0}{\mu}\right)$. Then

$$\begin{aligned} |x - x_0|^{\frac{n-2k}{2}} |U_{\mu, x_0}(x)| &= |X|^{\frac{n-2k}{2}} |U(X)| \text{ with } x = x_0 + \mu_{\alpha} X \\ &= C \left(\frac{|X|}{1 + |X|^2}\right)^{\frac{n-2k}{2}} : \text{ Bounded and } <<1 \text{ for } |X| >>1 \end{aligned}$$

So, more or less, the quantity (\star) is preserved after the change of function.

• Claim 1: (w_{α}) is bounded:

$$d_g(x, x_\alpha)^{rac{n-2k}{2}} |u_lpha(x)| \leq C \; \Rightarrow \; |V_lpha(x)| \leq rac{C}{d_g(x, x_lpha)^{2k}} : \; ext{Hardy potential}$$

• $w_{\alpha}(x)$ is small "far from the peak":

Let us go back to the invariance. A paramount quantity here is

$$w_{\alpha}(x) := d_{g}(x, x_{\alpha})^{\frac{n-2k}{2}} u_{\alpha}(x) \tag{(\star)}$$

originating in Schoen-Zhang.

Why? For a function $U : \mathbb{R}^n \to \mathbb{R}$, recall $U_{\mu,x_0}(x) := \mu^{-\frac{n-2k}{2}} U\left(\frac{x-x_0}{\mu}\right)$. Then

$$\begin{aligned} |x - x_0|^{\frac{n-2k}{2}} |U_{\mu, x_0}(x)| &= |X|^{\frac{n-2k}{2}} |U(X)| \text{ with } x = x_0 + \mu_{\alpha} X \\ &= C \left(\frac{|X|}{1 + |X|^2}\right)^{\frac{n-2k}{2}} : \text{ Bounded and } <<1 \text{ for } |X| >>1 \end{aligned}$$

So, more or less, the quantity (\star) is preserved after the change of function.

• Claim 1: (w_{α}) is bounded:

$$d_g(x,x_{lpha})^{rac{n-2k}{2}}|u_{lpha}(x)|\leq C \;\Rightarrow\; |V_{lpha}(x)|\leq rac{\mathcal{C}}{d_g(x,x_{lpha})^{2k}}:\; ext{Hardy potential}$$

• $w_{\alpha}(x)$ is small "far from the peak":

$$\lim_{R \to +\infty} \lim_{\alpha \to +\infty} \sup_{M - B(x_{\alpha}, R\mu_{\alpha})} d_{g}(x, x_{\alpha})^{\frac{n-2k}{2}} |u_{\alpha}(x)| = 0$$

So $\forall \epsilon > 0$, $\exists R_{\epsilon} > 0$ such that $|V_{\alpha}(x)| \leq \frac{\epsilon}{d_g(x, x_{\alpha})^{2k}}$ for all $d_g(x, x_{\alpha}) > R_{\epsilon}\mu_{\alpha}$

14 / 20

 $(P_{\alpha}-V_{\alpha})u_{\alpha}=0$

and

$$\forall \epsilon > 0, \; \exists R_{\epsilon} > 0 \; \text{such that} \; |V_{\alpha}(x)| \leq \frac{\epsilon}{d_g(x, x_{\alpha})^{2k}} \; \text{for all} \; d_g(x, x_{\alpha}) > R_{\epsilon} \mu_{\alpha}$$

 $(P_{\alpha}-V_{\alpha})u_{\alpha}=0$

and

$$\forall \epsilon > 0, \; \exists R_{\epsilon} > 0 \; \text{such that} \; |V_{\alpha}(x)| \leq \frac{\epsilon}{d_g(x,x_{\alpha})^{2k}} \; \text{for all} \; d_g(x,x_{\alpha}) > R_{\epsilon}\mu_{\alpha}$$

In order to perform the argument that failed earlier, we need to get a **pointwise** control on \overline{G}_{α} , the Green's function of $P_{\alpha} - V_{\alpha}$ with the property above.

 $(P_{\alpha}-V_{\alpha})u_{\alpha}=0$

and

$$\forall \epsilon > 0, \; \exists R_{\epsilon} > 0 \; \text{such that} \; |V_{\alpha}(x)| \leq \frac{\epsilon}{d_g(x,x_{\alpha})^{2k}} \; \text{for all} \; d_g(x,x_{\alpha}) > R_{\epsilon}\mu_{\alpha}$$

In order to perform the argument that failed earlier, we need to get a **pointwise** control on \overline{G}_{α} , the Green's function of $P_{\alpha} - V_{\alpha}$ with the property above.

What we get (2/3 of the paper):

• When $x, y \in M$ are far from the singularity x_{α} , then

 $|G_{lpha}(x,y)| \leq Cd_g(x,y)^{2k-n} \Rightarrow$ Good

 $(P_{\alpha}-V_{\alpha})u_{\alpha}=0$

and

 $\forall \epsilon > 0, \; \exists R_{\epsilon} > 0 \; \text{such that} \; |V_{\alpha}(x)| \leq \frac{\epsilon}{d_g(x,x_{\alpha})^{2k}} \; \text{for all} \; d_g(x,x_{\alpha}) > R_{\epsilon}\mu_{\alpha}$

In order to perform the argument that failed earlier, we need to get a **pointwise** control on \overline{G}_{α} , the Green's function of $\overline{P}_{\alpha} - V_{\alpha}$ with the property above.

What we get (2/3 of the paper):

• When $x, y \in M$ are far from the singularity x_{α} , then

 $|G_{lpha}(x,y)| \leq Cd_g(x,y)^{2k-n} \Rightarrow$ Good

• When x is close to the singularity x_{α} , and y is far, then

 $|G_{lpha}(x,y)| \leq Cd_g(x,x_{lpha})^{-\gamma}$

<ロト < 合 ト < 言 ト < 言 ト こ の Q () 15 / 20 Our equation rewrites

 $(P_{\alpha}-V_{\alpha})u_{\alpha}=0$

and

$$\forall \epsilon > 0, \ \exists R_{\epsilon} > 0 \text{ such that } |V_{\alpha}(x)| \leq \frac{\epsilon}{d_g(x,x_{\alpha})^{2k}} \text{ for all } d_g(x,x_{\alpha}) > R_{\epsilon}\mu_{\alpha}$$

In order to perform the argument that failed earlier, we need to get a **pointwise** control on \overline{G}_{α} , the Green's function of $P_{\alpha} - V_{\alpha}$ with the property above.

What we get (2/3 of the paper):

• When $x, y \in M$ are far from the singularity x_{α} , then

 $|G_{lpha}(x,y)| \leq Cd_g(x,y)^{2k-n} \Rightarrow$ Good

• When x is close to the singularity x_{α} , and y is far, then

$$|G_{\alpha}(x,y)| \leq Cd_g(x,x_{\alpha})^{-\gamma}$$

where $\gamma>0$ can be chosen as small as we want when $\epsilon>0$ is small enough: Good.

Our equation rewrites

 $(P_{\alpha}-V_{\alpha})u_{\alpha}=0$

and

 $\forall \epsilon > 0, \; \exists R_{\epsilon} > 0 \; \text{such that} \; |V_{\alpha}(x)| \leq \frac{\epsilon}{d_g(x, x_{\alpha})^{2k}} \; \text{for all} \; d_g(x, x_{\alpha}) > R_{\epsilon} \mu_{\alpha}$

In order to perform the argument that failed earlier, we need to get a **pointwise** control on \overline{G}_{α} , the Green's function of $P_{\alpha} - V_{\alpha}$ with the property above.

What we get (2/3 of the paper):

• When $x, y \in M$ are far from the singularity x_{α} , then

 $|G_{lpha}(x,y)| \leq Cd_g(x,y)^{2k-n} \Rightarrow$ Good

• When x is close to the singularity x_{α} , and y is far, then

 $|G_{\alpha}(x,y)| \leq Cd_{g}(x,x_{\alpha})^{-\gamma}$

where $\gamma>0$ can be chosen as small as we want when $\epsilon>0$ is small enough: Good.

• For general x, y: a mix of these two cases.

We get a sharp control of the Green's function and of its derivatives

At the end of the day, we have proved that

At the end of the day, we have proved that

For any function $v : \mathbb{R}^n \to \mathbb{R}$ and $\Omega \subset \mathbb{R}^n$, we have that

$$\int_{\Omega} \left(x^i \partial_i v + \frac{n-2k}{2} v \right) \left(\Delta_{\xi}^k v - |v|^{2^*-2} v \right) \, dx = \int_{\partial \Omega} \dots$$

For any function $v : \mathbb{R}^n \to \mathbb{R}$ and $\Omega \subset \mathbb{R}^n$, we have that

$$\int_{\Omega} \left(x^i \partial_i v + \frac{n-2k}{2} v \right) \left(\Delta_{\xi}^k v - |v|^{2^*-2} v \right) \, dx = \int_{\partial \Omega} \dots$$

Our equation is

$$\Delta_g^k u_\alpha + (-1)^{k-1} \nabla^{k-1} (A_\alpha \nabla^{k-1} u_\alpha) + \mathit{lot} = |u_\alpha|^{2^\star - 2} u_\alpha \text{ in } M$$

For any function $v : \mathbb{R}^n \to \mathbb{R}$ and $\Omega \subset \mathbb{R}^n$, we have that

$$\int_{\Omega} \left(x^i \partial_i v + \frac{n-2k}{2} v \right) \left(\Delta_{\xi}^k v - |v|^{2^*-2} v \right) \, dx = \int_{\partial \Omega} \dots$$

Our equation is

$$\Delta_g^k u_\alpha + (-1)^{k-1} \nabla^{k-1} (\mathcal{A}_\alpha \nabla^{k-1} u_\alpha) + \mathit{lot} = |u_\alpha|^{2^\star - 2} u_\alpha \text{ in } \mathcal{M}$$

we write it as

$$P_g u_lpha + (-1)^{k-1}
abla^{k-1} ((A_lpha - A_{GJMS})
abla^{k-1} u_lpha) + \mathit{lot} = |u_lpha|^{2^\star - 2} u_lpha$$
 in M

For any function $v : \mathbb{R}^n \to \mathbb{R}$ and $\Omega \subset \mathbb{R}^n$, we have that

$$\int_{\Omega} \left(x^i \partial_i v + \frac{n-2k}{2} v \right) \left(\Delta_{\xi}^k v - |v|^{2^*-2} v \right) \, dx = \int_{\partial \Omega} \dots$$

Our equation is

$$\Delta_g^k u_lpha + (-1)^{k-1}
abla^{k-1} (A_lpha
abla^{k-1} u_lpha) + \mathit{lot} = |u_lpha|^{2^\star - 2} u_lpha$$
 in M

we write it as

$$P_g u_\alpha + (-1)^{k-1} \nabla^{k-1} ((A_\alpha - A_{GJMS}) \nabla^{k-1} u_\alpha) + lot = |u_\alpha|^{2^{\star}-2} u_\alpha \text{ in } M$$

we can change the metric in metric \tilde{g} conformal to g becomes "almost flat", that is $Ric_{\tilde{g}}(x_{\alpha}) = 0.$

For any function $v : \mathbb{R}^n \to \mathbb{R}$ and $\Omega \subset \mathbb{R}^n$, we have that

$$\int_{\Omega} \left(x^i \partial_i v + \frac{n-2k}{2} v \right) \left(\Delta_{\xi}^k v - |v|^{2^*-2} v \right) \, dx = \int_{\partial \Omega} \dots$$

Our equation is

$$\Delta_g^k u_lpha + (-1)^{k-1}
abla^{k-1} (A_lpha
abla^{k-1} u_lpha) + \mathit{lot} = |u_lpha|^{2^\star - 2} u_lpha$$
 in M

we write it as

$$P_g u_\alpha + (-1)^{k-1} \nabla^{k-1} ((A_\alpha - A_{GJMS}) \nabla^{k-1} u_\alpha) + lot = |u_\alpha|^{2^{\star}-2} u_\alpha \text{ in } M$$

we can change the metric in metric \tilde{g} conformal to g becomes "almost flat", that is $Ric_{\tilde{g}}(x_{\alpha}) = 0$. We then write

$$\Delta_{\tilde{g}}^{k} u_{\alpha} + (-1)^{k-1} \nabla^{k-1} ((A_{\alpha} - A_{GJMS}) \nabla^{k-1} u_{\alpha}) + lot = |u_{\alpha}|^{2^{\star}-2} u_{\alpha} \text{ in } M$$

For any function $v : \mathbb{R}^n \to \mathbb{R}$ and $\Omega \subset \mathbb{R}^n$, we have that

$$\int_{\Omega} \left(x^i \partial_i v + \frac{n-2k}{2} v \right) \left(\Delta_{\xi}^k v - |v|^{2^*-2} v \right) \, dx = \int_{\partial \Omega} \dots$$

Our equation is

$$\Delta_g^k u_lpha + (-1)^{k-1}
abla^{k-1} (A_lpha
abla^{k-1} u_lpha) + \mathit{lot} = |u_lpha|^{2^\star - 2} u_lpha$$
 in M

we write it as

$$P_g u_\alpha + (-1)^{k-1} \nabla^{k-1} ((A_\alpha - A_{GJMS}) \nabla^{k-1} u_\alpha) + lot = |u_\alpha|^{2^{\star}-2} u_\alpha \text{ in } M$$

we can change the metric in metric \tilde{g} conformal to g becomes "almost flat", that is $Ric_{\tilde{g}}(x_{\alpha}) = 0$. We then write

$$\Delta_{\tilde{g}}^{k} u_{\alpha} + (-1)^{k-1} \nabla^{k-1} ((A_{\alpha} - A_{GJMS}) \nabla^{k-1} u_{\alpha}) + lot = |u_{\alpha}|^{2^{\star}-2} u_{\alpha} \text{ in } M$$

In the Pohozaev identity, we then get

$$\int_{\Omega} \left(x^{i} \partial_{i} u_{\alpha} + \frac{n-2k}{2} u_{\alpha} \right) \left((\Delta_{\xi}^{k} - \Delta_{\tilde{g}}^{k}) u_{\alpha} - (-1)^{k-1} \nabla^{k-1} ((A_{\alpha} - A_{GJMS}) \nabla^{k-1} u_{\alpha}) \right) dx = \dots$$

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ ≥ の < ⊘ 17/20

For any function $v : \mathbb{R}^n \to \mathbb{R}$ and $\Omega \subset \mathbb{R}^n$, we have that

$$\int_{\Omega} \left(x^{i} \partial_{i} v + \frac{n-2k}{2} v \right) \left(\Delta_{\xi}^{k} v - |v|^{2^{\star}-2} v \right) \, dx = \int_{\partial \Omega} \dots$$

Our equation is

$$\Delta_g^k u_lpha + (-1)^{k-1}
abla^{k-1} (A_lpha
abla^{k-1} u_lpha) + \mathit{lot} = |u_lpha|^{2^\star - 2} u_lpha ext{ in } M$$

we write it as

$$P_{g}u_{\alpha} + (-1)^{k-1}\nabla^{k-1}((A_{\alpha} - A_{GJMS})\nabla^{k-1}u_{\alpha}) + lot = |u_{\alpha}|^{2^{\star}-2}u_{\alpha} \text{ in } M$$

we can change the metric in metric \tilde{g} conformal to g becomes "almost flat", that is $Ric_{\tilde{g}}(x_{\alpha}) = 0$. We then write

$$\Delta_{\tilde{g}}^{k} u_{\alpha} + (-1)^{k-1} \nabla^{k-1} ((A_{\alpha} - A_{GJMS}) \nabla^{k-1} u_{\alpha}) + \mathit{lot} = |u_{\alpha}|^{2^{\star}-2} u_{\alpha} \text{ in } M$$

In the Pohozaev identity, we then get

$$\int_{\Omega} T(u_{\alpha}) \left(\underbrace{(\Delta_{\xi}^{k} - \Delta_{\tilde{g}}^{k})u_{\alpha}}_{\text{measures } \tilde{g} - \xi} - (-1)^{k-1} \nabla^{k-1} (\underbrace{(A_{\alpha} - A_{GJMS})}_{\text{distance from the conf.op.}} \nabla^{k-1} u_{\alpha}) \right) dx = \dots$$

where $T(u_{\alpha}) := x^i \partial_i u_{\alpha} + \frac{n-2k}{2} u_{\alpha}$.

<ロト < 合 ト < 言 ト < 言 ト 言 の Q () 18 / 20

For any function $v: \mathbb{R}^n \to \mathbb{R}$ and $\Omega \subset \mathbb{R}^n$, we have that

$$\int_{\Omega} \left(x^{i} \partial_{i} v + \frac{n-2k}{2} v \right) \left(\Delta_{\xi}^{k} v - |v|^{2^{\star}-2} v \right) \, dx = \int_{\partial \Omega} \dots$$

Our equation is

$$\Delta_g^k u_lpha + (-1)^{k-1}
abla^{k-1} (A_lpha
abla^{k-1} u_lpha) + \mathit{lot} = |u_lpha|^{2^\star - 2} u_lpha ext{ in } M$$

we write it as

$$P_{g}u_{\alpha} + (-1)^{k-1}\nabla^{k-1}((A_{\alpha} - A_{GJMS})\nabla^{k-1}u_{\alpha}) + lot = |u_{\alpha}|^{2^{\star}-2}u_{\alpha} \text{ in } M$$

we can change the metric in metric \tilde{g} conformal to g becomes "almost flat", that is $Ric_{\tilde{g}}(x_{\alpha}) = 0$. We then write

$$\Delta_{\tilde{g}}^{k} u_{\alpha} + (-1)^{k-1} \nabla^{k-1} ((A_{\alpha} - A_{GJMS}) \nabla^{k-1} u_{\alpha}) + \mathit{lot} = |u_{\alpha}|^{2^{\star}-2} u_{\alpha} \text{ in } M$$

In the Pohozaev identity, we then get

$$\int_{\Omega} T(u_{\alpha}) \left(\underbrace{(\Delta_{\xi}^{k} - \Delta_{\tilde{g}}^{k})u_{\alpha}}_{\text{measures }\tilde{g} - \xi} - (-1)^{k-1} \nabla^{k-1} (\underbrace{(A_{\alpha} - A_{GJMS})}_{\text{distance from the conf.op.}} \nabla^{k-1}u_{\alpha}) \right) dx = \dots$$

where $T(u_{\alpha}) := x^{i} \partial_{i} u_{\alpha} + \frac{n-2k}{2} u_{\alpha}$. When $n > 2k + 2$, we get

$$\operatorname{Weyl}_{g} \otimes B + \int_{\mathbb{R}^{n}} (A_{\infty} - A_{GJMS})_{x_{0}} \left(\nabla^{k-1} U, \nabla^{k-1} U \right) dX = 0$$

18 / 20

æ

On (M, g) of dimension $n \ge 5$, see Hebey, there exists B > 0 such that the following Sobolev inequality holds:

$$\left(\int_{M} |u|^{\frac{2n}{n-4}} \, dv_g\right)^{\frac{n-4}{n}} \leq K_4(n) \left(\int_{M} (\Delta_g u)^2 \, dv_g + B \|u\|_{H^2_1}^2\right) \text{ for all } u \in H^2_2(M). \ (I_B)$$

where $K_4(n)$ is the optimal Euclidean constant.

On (M, g) of dimension $n \ge 5$, see Hebey, there exists B > 0 such that the following Sobolev inequality holds:

$$\left(\int_{M} |u|^{\frac{2n}{n-4}} \, dv_g\right)^{\frac{n-4}{n}} \leq K_4(n) \left(\int_{M} (\Delta_g u)^2 \, dv_g + B \|u\|_{H^2_1}^2\right) \text{ for all } u \in H^2_2(M). \ (I_B)$$

where $K_4(n)$ is the optimal Euclidean constant.Let $B_0(g)$ be the smallest number B such that this inequality holds for all $u \in H_2^2(M)$.

Theorem

Assume that $n \ge 6$. Then if there is no nontrivial extremal for $(I_{B_0(g)})$, then

$$B_0(g) = \frac{3n^2 - 6n - 12}{6n(n-1)} \max_{x \in M} R_g(x).$$

Paneitz operator and Q-curvature

$$\begin{aligned} \mathsf{Pa}_g u &= \Delta_g^2 u - \mathsf{div}_g \left[(a_n S_g g + b_n \mathsf{Ric}_g)^\# \mathsf{d}u \right] + \frac{n-4}{2} Q_g u, \\ a_n &= \frac{(n-2)^2 + 4}{2(n-1)(n-2)} \ , \ b_n &= -\frac{4}{n-2} \ , \end{aligned}$$
$$\begin{aligned} Q_g^n &= \frac{1}{2(n-1)} \Delta_g R_g + \frac{n^3 - 4n^2 + 16n - 16}{8(n-1)^2(n-2)^2} R_g^2 - \frac{2}{(n-2)^2} |\mathsf{Ric}_g|_g^2. \end{aligned}$$

・ロト・白ト・ヨト・ヨー うへぐ

20 / 20