The L^p-positivity preservation on Riemannian manifolds

Giona Veronelli

Università di Milano-Bicocca

Grenoble Sobolev Inequalities in the Alps

June 30th, 2023

Giona Veronelli (Milano-Bicocca)

(日) (四) (日) (日) (日)

The property we are interested in this talk:

Definition (positivity preservation)

A Riemannian manifold (M,g) is said to be <u>L^p-Positivity</u> <u>Preserving</u> (L^p-PP in short) if, for any $\lambda > 0$,

 $(L^{p}-PP)$

$$egin{cases} -\Delta w + \lambda w \geq 0 ext{ distributionally on } M \ w \in L^p(M) \ \end{cases} o w$$

- i.e., $(-\Delta+\lambda)^{-1}:\cdots o L^p$ is positive
- For the moment think (M, g) smooth and complete. In the second part we will try to remove these assumptions
- Here Δ = div(∇·) is the negative Laplace-Beltrami operator (i.e. Δ = + ^{d²}/_{dx²} on **R**)
- $-\Delta w + \lambda w \ge 0$ distributionally means

$$\int_{M} w(-\Delta + \lambda) \varphi \ge 0, \qquad \forall \, \mathsf{0} \le \varphi \in \mathit{C}^{\infty}_{c}(M)$$

In particular $-\Delta w + \lambda w = \mu$ is a positive Radon measure.

> 0.

In this talk:

- Motivations for considering the L^{p} -PP property
- Older approaches and techniques
- The case of complete manifolds and the BMS conjecture
- Removing compact sets from complete manifolds
- Dirichlet metric measure spaces (and a new notion of subharmonicity)

• [S. Pigola and G. Veronelli, L^p Positivity Preserving and a conjecture by M. Braverman, O. Milatovic and M. Shubin, 2021]

unpublished, and incorporated in

- [S. Pigola, D. Valtorta and G. Veronelli, *Approximation, regularity and positivity preservation on Riemannian manifolds.* arXiv:2301.05159, submitted for publication
- [B. Güneysu, S. Pigola, P. Stollmann, and G. Veronelli, A new notion of subharmonicity on locally smoothing spaces, and a conjecture by Braverman, Milatovic, Shubin. arXiv:2302.09423, submitted for publication]

イロト イポト イヨト イヨト

 L^{p} -**Positivity preservation:** name introduced by B. Güneysu, but the property goes back to the celebrated work of T. Kato on the spectral theory of Schrödinger operators with singular potential.

A step back:

Theorem

Let (M, g) be a complete Riemannian manifold. Then, the Laplace operator $(\Delta, C_c^{\infty}(M))$ is essentially self-adjoint in $L^2(M)$.

Rmk. Celebrated result which goes back to [P.M. Gaffney, Proc. Nat. Acad. Sci. (1951)] and [W. Roelcke, Math. N. (1960)]. Popularized by [R. Stricharts, JFA 1983].

Recall that $(\Delta, C_c^{\infty}(M))$ is **essentially self-adjoint** in $L^2(M)$ when $\overline{\Delta} = \Delta^*$. Start with

$$\Delta: C^{\infty}_{c}(M) \subseteq L^{2}(M) \to L^{2}(M)$$

 Δ is densely defined and symmetric.

< ロ > < 同 > < 三 > < 三 > 、

Its adjoint: $\Delta^* : \mathcal{D}(\Delta^*) \subseteq L^2(M) \to L^2(M)$ is defined on the domain

$$\mathcal{D}(\Delta^*) = \{ u \in L^2(M) : \Delta u \in L^2(M) \}$$

Its closure: $\overline{\Delta} : \mathcal{D}(\overline{\Delta}) \subseteq L^2(M) \to L^2(M)$ (defined by the equation $\overline{\Gamma(\Delta)} = \Gamma(\overline{\Delta})$ on graphs) has domain

$$\mathcal{D}(\bar{\Delta}) = \overline{C_c^{\infty}(M)}^{\|\cdot\|_{\widetilde{W}^{2,2}}}$$

where

$$\|u\|_{\widetilde{W}^{2,2}}^2 = \|u\|_{L^2}^2 + \|\Delta u\|_{L^2}^2.$$

We have

$$(\Delta, C_c^{\infty}(M)) \subseteq (\overline{\Delta}, \mathcal{D}(\overline{\Delta})) \subseteq (\Delta^*, \mathcal{D}(\Delta^*)).$$

Rmk. $\overline{\Delta} = \Delta^* \Leftrightarrow C_c^{\infty}(M)$ is dense in $\widetilde{W}^{2,2}(M)$. No direct proofs of this latter fact are known on general complete manifolds!

A great effort has been spent in order to extend this to more general operators.

 $\mathsf{Let}\ \mathsf{0} \leq \mathsf{V} \in L^2_{\mathit{loc}}(\mathsf{M}) \text{ and consider } \mathscr{L} = \Delta - \mathsf{V} : C^\infty_c(\mathsf{M}) \subseteq L^2(\mathsf{M}) \to L^2(\mathsf{M})$

• As above, the symmetric operator $\mathscr L$ has a closure $\bar{\mathscr L}\subseteq \mathscr L^*$ with

$$\mathcal{D}(\bar{\mathscr{P}}) = \overline{C_c^{\infty}(M)}^{\widetilde{W}_V^{1,2}}, \quad \|\varphi\|_{\widetilde{W}_V^{1,2}}^2 = \int_M \varphi^2 + \int_M (\Delta \varphi - V \varphi)^2.$$

and

$$\mathcal{D}(\mathscr{L}^*) = \{ u \in L^2(M) : \Delta u - Vu \in L^2(M) \}$$

• \mathscr{L} is essentially self-adjoint if $\bar{\mathscr{L}} = \mathscr{L}^*.$ This happens iff

$$\forall \lambda > 0, \qquad \begin{cases} \mathscr{L}u = \lambda u \text{ distributionally on } M \\ u \in L^2(M) \end{cases} \Rightarrow \quad u \equiv 0.$$

How to prove this latter property?

The approach by [T. Kato, Israel Math. J. 1972] in \mathbb{R}^n uses a short-cut. Suppose $\mathscr{L}u = \Delta u - Vu = \lambda u$ for some $u \in L^2(M)$ $\implies \Delta u = (V + \lambda)u$ with $u \in L^1_{loc} \& (V + \lambda)u \in L^1_{loc}$ $\implies \Delta |u| \ge (V + \lambda)|u| \ge 0$ (by Kato's inequality) $\implies (-\Delta w + \lambda w) \ge -Vw \ge 0$, where $0 \ge w = -|u| \in L^2(M)$.

If M is L^2 -PP, then

$$\begin{cases} (-\Delta + \lambda)w \ge 0 \text{ distributionally on } M \\ w \in L^2(M) \end{cases} \Rightarrow w \ge 0 \Rightarrow w = 0.$$

The problem is now: under which geometric assumptions M is L^2 -PP ?

3

(日)

At some point of the history...

Using a refined integration by parts techniques, Braverman, Milatovic and Shubin [M. Braverman, O. Milatovich and M. Shubin, Uspekhi Mat. Nauk 2002, Russian Math. Surveys 2002] realized that

Theorem

On any complete Riemannian manifold, for any $0 \le V \in L^2_{loc}$, $\mathscr{L} = \Delta - V : C^{\infty}_c(M) \subseteq L^2(M) \rightarrow L^2(M)$ is essentially self-adjoint.

This led them to

Conjecture (BMS)

Any smooth complete Riemannian manifold is L^2 -positivity preserving.

 see also the dedicated survey [B. Güneysu, Ulmer Seminare 2016-2017, available at https://arxiv.org/pdf/1709.07463.pdf]

イロン イ団 とく ヨン イヨン

An L^p-version of the essential self-adjointness.

Consider the Schrödinger operator $\mathscr{L} = \Delta - V(x)$ with $0 \leq V(x) \in L^p_{loc}(M)$.

One would like to know if $\mathscr{L}_{p,min} = \mathscr{L}_{p,max}$ where $\mathscr{L}_{p,min} = \overline{\mathscr{L}}|_{C_c^{\infty}(M)}$ and $\mathcal{D}(\mathscr{L}_{p,max}) = \{ u \in L^p(M) : Vu \in L^1_{loc}(M) \text{ and } \mathscr{L}u \in L^p(M) \}.$

In this case we say that C^{∞}_c is an operator core for $\mathscr L$ in $L^p(M)$

So far only known only under (Ricci) curvature (lower) bounds.

 \implies It makes sense to investigate the L^p -positivity preservation also for $p \neq 2$.

3

Proving the L^p -positivity preservation

In the literature, we found two approaches to prove that \mathbf{R}^n is L^p -PP.

- **T. Kato original argument.** Let $\mathscr{S}'(\mathbf{R}^n)$ be the space of tempered distributions.
 - If $u \in L^p$, then $0 \leq (-\Delta + \lambda)u \in \mathscr{S}'(\mathcal{R}^n)$.
 - it is enough to prove that $(-\Delta + \lambda)^{-1}$ is positive, i.e.

$$\mathcal{T}\in \mathscr{S}'(\mathbf{R}^n), \ \mathcal{T}\geq 0 \implies (-\Delta+\lambda)^{-1}(\mathcal{T})\geq 0.$$

• this is true because, when acting on $\mathscr{S}(\mathbf{R}^n)$, the operator $(-\Delta + \lambda)^{-1}$ has a positive integral kernel $g_{\lambda}(x) = \lambda^{n-2}g_1(\lambda x)$ where

$$g_1(x) = C|x|^{\frac{2-n}{2}}K_{\frac{n-2}{2}}(x)$$

and K is the modified Bessel function of the second kind.

Rmk. This approach looks very much sensitive of the structure of the Euclidean space.

イロト イボト イヨト イヨト

E. B. Davies argument, reported in Appendix B of [M. Braverman, O. Milatovich and M. Shubin, Uspekhi Mat. Nauk 2002, Russian Math. Surveys 2002].

Def. Let (M, g) be a Riemannian manifold. Say that $\{\varphi_k\} \subseteq C_c^2(M)$ is a sequence of Laplacian cut-offs if (a) $\varphi_k \nearrow 1$, (b) $\|\nabla \varphi_k\|_{\infty} \to 0$ and (c) $\sup_k \|\Delta \varphi_k\|_{\infty} < +\infty$.

Rmk.

• For $M = \mathbf{R}^n$, take

$$\varphi_k = 1 \text{ on } B_k(0), \qquad \varphi_k = 0 \text{ on } \mathbb{R}^n \setminus B_{2k}(0) \qquad \text{and} \qquad \partial_r \varphi_k \asymp k^{-1}.$$

• On a complete manifold (M, g) the existence of Laplacian cut-offs is related to *curvature*. The most general condition is due to [D. Bianchi and A.G. Setti, Calc. Var. 2018]: Ric $\geq -K^2(1 + \text{dist}(x, o)^2)$, for some origin $o \in M$.

Let's see how to use Laplacian cut-offs to prove L^p -PP...

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The assumption $(-\Delta + \lambda)u \ge 0$ means: $\forall \psi \in C^{\infty}_{c}(M)$ with $\psi \ge 0$,

(*)
$$\int_{M} u(-\Delta \psi + \lambda \psi) \geq 0.$$

• We want to prove $u \geq 0$: $\forall \eta \in C^\infty_c(M)$ with $\eta \geq 0$,

$$\int_{M} u\eta \geq 0.$$

- The equation $(-\Delta + \lambda)v = \eta$ has 1! solution $0 \le v \in C^{\infty}(M) \cap W^{1,2}(M)$.
- If $v \in C_c^{\infty}$ take $\psi = v$ and we are done. Otherwise...
- Let φ_k be a sequence of Laplacian cut-offs. Evaluate (*) along ψ_k = vφ_k and compute:

$$0 \leq \int_{M} u(-\Delta \psi_{k} + \lambda \psi_{k})$$

= $\int_{M} u(-\Delta v + \lambda v)\varphi_{k} - \int_{M} u v \Delta \varphi_{k} - 2 \int_{M} u \langle \nabla v, \nabla \varphi_{k} \rangle$
= $\int_{M} u \eta \varphi_{k} - \int_{M} u v \Delta \varphi_{k} - 2 \int_{M} u \langle \nabla v, \nabla \varphi_{k} \rangle \xrightarrow{k \to +\infty} \int_{M} u \eta \, \mathrm{d}x.$

In particular a complete Riemannian manifold (M, g) is L^{p} -PP when

- Ricci decay to $-\infty$ at most quadratically and $1 \le p \le +\infty$;
 - p = 2: [D. Bianchi and A.G. Setti, Calc. Var. 2018]. Laplacian cut-offs give $\int_{M} u v \Delta \varphi_k \rightarrow 0$.
 - $p \neq 2$: [B. Güneysu, Operator Theory: Advances and Applications, book 2017], [L. Marini and G. Veronelli, Preprint 2021]. A little more effort to get $\int_{M} u \langle \nabla v, \nabla \varphi_k \rangle \rightarrow 0$
- (M,g) is Cartan-Hadamard, Ricci must decay to $-\infty$ polynomially and $2 \le p < +\infty$; [L. Marini and G. Veronelli, Preprint 2021].
 - In this case $\|\Delta \varphi_k\|_\infty$ exploses polynomially,
 - but one disposes of super-Euclidean Hardy inequalities:
 - u is very much L^p-integrable

 $\Rightarrow \quad \int_{\mathbf{R}^n} u \, v \, \Delta \varphi_k \, \mathrm{d} x \longrightarrow 0$

Rmk. In such a setting also density of C_c^{∞} in $W^{2,p}$ and L^2 -Calderón-Zygmund inequalities.

イロト イヨト イヨト イヨト

э

Theorem (The L^p-positivity preserving property)

Let (M, g) be a complete Riemannian manifold and let $1 . If, for some <math>\lambda > 0$, $u \in L^{p}(M)$ is a distributional solution of $(-\Delta u + \lambda u) \ge 0$ then $u \ge 0$.

Note that the L^p -PP is false in general if $p = 1, +\infty$ (but true if $Ric(x) \gtrsim -d(x)^2$)

- for p = 1, take a complete manifold such that $\Delta u = \delta$ has a negative L^1 solution. Then
- for $p = +\infty$,

M is $L^p - PP \iff M$ is stochastically complete;

see [B. Güneysu, Birkhauser 2016] and [A. Bisterzo and L. Marini, PotA 2022].

イロン イ団 とく ヨン ト ヨン・

A (formal) proof. Let 1 . Suppose that

 $\begin{cases} (-\Delta + \lambda)w \ge 0 \text{ distributionally on } M, \qquad \Rightarrow \Delta(-w) \ge \lambda(-w) \\ w \in L^p(M) \end{cases}$

Assume $\Delta(-w) \in L^1_{loc}$. Kato's inequality gives $\Delta(-w)_+ \ge \lambda(-w)_+ \ge 0$, i.e. $v = (-w)_+$ is a nonnegative subharmonic function in L^p . Assume moreover that $v, v^{p/2} \in W^{1,2}_{loc}(M)$, then [S.T. Yau, Indiana 1976] proved

Theorem $(L^{p}$ -Liouville)

Assume 1 and

$$\begin{cases} \Delta v \ge 0 \\ 0 \le v \in L^p \\ v \text{ and } v^{p/2} \in W^{1,2}_{loc} \end{cases} \implies v \equiv const.$$

Thus $w \ge 0$

イロト イヨト イヨト イヨト

Proof (of the L^{p} -Liouville).

Since $v \in W_{loc}^{1,2}$ then $\Delta v \ge 0$ means

$$-\int_{M} \langle \nabla \nu, \nabla \psi \rangle \geq 0, \qquad \forall 0 \leq \psi \in W_{c}^{1,2}$$

Choose $\psi = (v + \delta)^{p-1} \varphi_k^2$, with $0 \le \varphi_k \in C_c^\infty$

Integrating and elaborating (via Young inequality for any 0 < ε < 1) as $\delta \rightarrow$ 0 gives:

Caccioppoli ineq:
$$C(p,\varepsilon)\int_{M} |\nabla v^{p/2}|^2 \varphi_k^2 \leq \int_{M} v^p |\nabla \varphi_k|^2.$$

If *M* is complete, choosing $\varphi_k \nearrow 1$, $\|\nabla \varphi_k\|_{\infty} \to 0$ gives $v^{p/2} \equiv const$.

3

(日)

Problems in the formal proof:

- We assumed $\Delta(-w) \in L^1_{loc}$ to apply Kato's inequality
- We assumed $v^{s/2} \in W^{1,2}_{loc}(M)$, s = 2, p, to apply the L^p-Liouville theorem

In the following:

- We will give a version of the Kato's inequality under weaker regularity assumptions
- We will show that

$$\begin{cases} \Delta v \geq 0 \\ v \geq 0 \end{cases} \Rightarrow v^{s/2} \in W^{1,2}_{loc}(M) \text{ for any } s > 1. \end{cases}$$

э

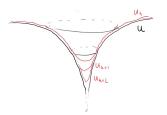
(日)

Basic tool: the monotonic approximation of distributional subsolutions.

Theorem (monotonic approximation)

Let $\Omega \subset \Omega' \subset M$ smooth compact domains. Let $u \in L^1_{loc}(M)$ λ -subharmonic in Ω' for some $0 \leq \lambda$, i.e. $\Delta u - \lambda u \geq 0$ distributionally. Then, there exists a sequence $\{u_k\} \subset C^{\infty}(\overline{\Omega})$ such that:

- 1. $u_k(x) \rightarrow u(x)$ pointwise a.e. in Ω and in $L^1(\Omega)$.
- 2. $\Delta u_k \lambda u_k \ge 0$ in Ω , $\forall k \in \mathbf{N}$.
- 3. $u_k \geq u_{k+1} \geq u, \forall k \in \mathbf{N}.$



(日) (四) (日) (日) (日)

About the proof of the monotonic approximation.

WLOG we can assume $\lambda = 0$. Indeed:

• Let $0 < \alpha \in C^{\infty}(\Omega')$ solve $\Delta \alpha = \lambda \alpha$. Protter-Weinberger trick:

$$\Delta u - \lambda u \geq 0 \iff \Delta_{\tilde{g}}\left(rac{u}{lpha}
ight) \geq 0, \qquad ext{where } \tilde{g} = lpha^{rac{4}{2-n}}g.$$

Case: Ω is a coordinate chart:

- a) First proof by [W. Littman, ASNSP 1963] (with some gaps?)
- b) Different approach via potential theory à la Hervé-Brelot [P. Sjogren, Ark. Mat. 1973], [A. Bonfiglioli and A. Lanconelli, JEMS 2013]

General (bounded) Ω :

- b) "globalized" by [A. Bisterzo and L. Marini, PotA 2022]
- we give a self-contained direct proof similar to Littman

(日) (四) (日) (日) (日)

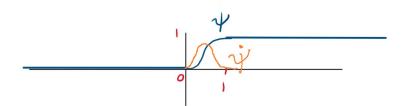
In \mathbf{R}^n , $u_k(x) \approx \frac{1}{|\partial B_{\epsilon}(x)|} \int_{\partial B_{\epsilon}(x)} u(y)$. On M the distance is replaced by a function of G, the Green function of Ω' :

$$\Delta_x G(x,y) = -\delta_{x=y}, \qquad G(x,y) = 0 ext{ if } y \in \partial \Omega', \ x \in \mathring{\Omega}$$

Namely,

$$u_k(x) = \int_M \dot{\psi}(G(x,y) - k)u(y)|\nabla G(x,y)|^2$$

with



æ

イロト イポト イヨト イヨト

The Brezis-Kato inequality. Recall Kato inequality:

$$u \in L^1_{loc}(M) \text{ and } \Delta u \in L^1_{loc}(M) \Longrightarrow \Delta u_+ = \mathbb{1}_{\{u>0\}} \Delta u.$$

A variant of Kato inequality for the Laplacian in \mathbb{R}^n is due to [H. Brezis, Appl. Math. Optim. 1984].

Theorem (Brezis-Kato)

Let (M, g) be a Riemannian manifold. If $u \in L^1_{loc}(M)$ is a distributional solution of $\Delta u \ge f \in L^1_{loc}$, then $\Delta u_+ \ge \chi_{u>0} f$.

Idea of the proof $(f = \lambda u)$. Approximate u_+ with $H_{\varepsilon}(u_k)$, where

•
$$H_{\varepsilon}(t)
ightarrow t_+$$
 as $\varepsilon
ightarrow 0$

• {*u_k*} is a smooth monotonic approximation of *u* on Ω (replaces Euclidean convolution in Brezis-Ponce's proof).

< ロ > < 同 > < 三 > < 三 > 、

Improved regularity of positive subsolutions. A nonnegative subharmonic distribution is much more regular than it could appear.

Theorem (regularity)

Let (M, g) be a Riemannian manifold and let $0 \le u \in L^1_{loc}(M)$ be a distributional solution of $\Delta u \ge 0$. Then $u^{s/2} \in W^{1,2}_{loc}(M)$ for every $1 < s < +\infty$.

Proof.

 Let u_k \sqrsp u be a smooth monotonic approximation of u on a domain Ω ∈ M. Thus 0 ≤ u_k ∈ C[∞](Ω̄) satisfy Δu_k ≥ 0 in Ω.

• Let $0 \le \varphi \in C_c^{\infty}(M)$. Caccioppoli ineq:

$$C(s,\varepsilon)\int_{M}|\nabla u_{k}^{s/2}|^{2}\varphi^{2}\leq\int_{M}u_{k}^{s}|\nabla \varphi|^{2}$$

23/34

< ロ > < 同 > < 三 > < 三 > 、

Improved regularity of positive subsolutions. A nonnegative subharmonic distribution is much more regular than it could appear.

Theorem (regularity)

Let (M, g) be a Riemannian manifold and let $0 \le u \in L^1_{loc}(M)$ be a distributional solution of $\Delta u \ge 0$. Then $u^{s/2} \in W^{1,2}_{loc}(M)$ for every $1 < s < +\infty$.

Proof.

 Let u_k \sqrsp u be a smooth monotonic approximation of u on a domain Ω ∈ M. Thus 0 ≤ u_k ∈ C[∞](Ω̄) satisfy Δu_k ≥ 0 in Ω.

• Let $0 \le \varphi \in C_c^{\infty}(M)$. Caccioppoli ineq:

$$C(s,\varepsilon)\int_{M} |\nabla u_{k}^{s/2}|^{2}\varphi^{2} \leq \int_{M} u_{k}^{s} |\nabla \varphi|^{2} \leq \int_{M} u_{1}^{s} |\nabla \varphi|^{2}$$
$$u_{k}^{s/2}\} \text{ is bounded in } W^{1,2}(\Omega), \text{ hence } u_{k_{h}}^{s/2} \rightharpoonup u^{s/2} \in W^{1,2}(\Omega).$$

イロト イヨト イヨト イヨト

Back to the proof of *L*^{*p*}-Lioville.

Let
$$s \in (1, p)$$
 and
$$\begin{cases} v \ge 0, & \Delta v \ge 0, \\ v, & v^{s/2} \in W_{loc}^{1,2} \end{cases}$$
 (for free)
Caccioppoli ineq: $C(s, \varepsilon) \int_{M} |\nabla v^{s/2}|^2 \varphi_k^2 \, \mathrm{d}x \le \int_{M} v^s |\nabla \varphi_k|^2 \, \mathrm{d}x$

2

24 / 34

Back to the proof of *L*^{*p*}-Lioville.

L

Let
$$s \in (1, p)$$
 and $\begin{cases} v \ge 0, & \Delta v \ge 0, \\ v, & v^{s/2} \in W_{loc}^{1,2} \end{cases}$ (for free)
Caccioppoli ineq: $C(s, \varepsilon) \int_{M} |\nabla v^{s/2}|^2 \varphi_k^2 \, \mathrm{d}x \le \int_{M} v^s |\nabla \varphi_k|^2 \, \mathrm{d}x$
 $\stackrel{C-S}{\le} \left(\int_{M} v^p \right)^{\frac{s}{p}} \left(\int_{M} |\nabla \varphi_k|^{\frac{2p}{p-s}} \right)^{\frac{p-s}{p}}$

2

メロト メロト メヨト メヨト

24 / 34

Back to the proof of L^p -Lioville.

Caccioppoli ineq:
$$C(s,\varepsilon) \int_{M} |\nabla v^{s/2}|^2 \varphi_k^2 \, \mathrm{d}x \leq \int_{M} v^s |\nabla \varphi_k|^2 \, \mathrm{d}x$$

$$\leq \left(\int_{M} v^p \right)^{\frac{s}{p}} \left(\int_{M} |\nabla \varphi_k|^{\frac{2p}{p-s}} \right)^{\frac{p-s}{p}} \stackrel{s \to \infty}{\longrightarrow} 0$$

provided that $v \in L^{p}(M)$ and $\|\varphi_{k}\|_{\frac{2p}{p-s}} \to 0$ Such $\{\varphi_{k}\}_{k}$ exists if M is $\left(\frac{2p}{p-s}\right)$ -parabolic.

Recall. *q*-parabolicity is a property of a space from potential theory which can be defined in term of capacities, Green functions, subharmonic functions, recurrence of the Brownian motion (p = 2)...

Rmk. Complete = ∞ -parabolic

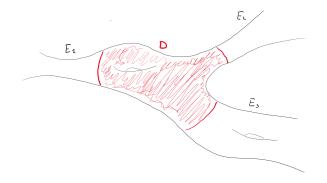
24 / 34

イロト 不得 トイヨト イヨト

Theorem

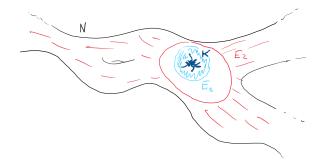
Let $p \in (1, \infty)$. Let M be an open connected (not necessarily complete) manifold with a finite number of ends E_1, \ldots, E_N . If each end E_j is q_j -parabolic for some $q_j \in (\frac{2p}{p-1}, \infty]$, then the L^p -Liouville holds on M, so that in particular M is L^p -PP.

Here, end = connected component of $M \setminus D$ for some compact D.



< ロ > < 同 > < 回 > < 回 >

A special case. *q*-parabolic manifold with *q* large (e.g. *M* complete, e.g. $M = \mathbf{R}^n$) and *K* is a compact set.



Corollary

Let $p \in (1, \infty)$. Let N be a complete (or q-parabolic, q > 2p/(p-1)) Riemannian manifold and $K \subset N$ a compact set. Suppose that K is q-polar for some q > 2p/(p-1). Then $M = N \setminus K$ is L^p -PP.

In potential theory: q-polar = small. It is implied by $\mathcal{H}^{n-q}(K) = 0$.

イロト イ団ト イヨト イヨト

Corollary

 $p \in (1, \infty), N \text{ complete, } \dim_{\mathcal{H}} K < n - \frac{2p}{p-1}. \text{ Then}$ 1. L^p -Liouville on $N \setminus K$ 2. $N \setminus K \text{ is } L^p$ -PP 3. For $0 \le V \in L^1_{loc},$ $p = 2 \ (-\Delta + V) \text{ is ess. self-adjoint in } L^2$ $p \ne 2 \ C_c^{\infty}(N \setminus K) \text{ is an operator core for } (-\Delta + V) \text{ in } L^p$

3. seems partially new even in case V = 0 or $p \neq 2$ and $K = \emptyset$.

Previous partial results by

- [Y. Colin de Verdière, Ann. Inst. Fourier, 1982] [J. Masamune, Comm. PDEs, 1999]: V = 0, p = 2 and K is a smooth submanifold
- [M. Hinz, J. Masamune and K. Suzuki, Nonlinear Anal. 2023]: V = 0 and K singular. Stronger than our result for small p and weaker for large p.
- [T. Kato, North-Holland Math. Stud, 1986],[O. Milatovic, JMAA, 2006],[B. Güneysu and S. Pigola, AMPA, 2019]: K = Ø and geometric restriction.

イロト 不得 トイヨト イヨト

What about the assumption dim_{\mathcal{H}} $K < n - \frac{2p}{p-1}$?

Proposition

If dim_H $K > n - \frac{2p}{p-1}$, then $N \setminus K$ does not enjoy neither the L^p -Liouville nor the L^p -PP property.

Counterexamples are modeled on solutions of $-\Delta u + \lambda u = \mu|_{\mathcal{K}}$ with μ a Hausdorff measure of the suitable dimension.

Corollary. If N is complete than $N \setminus K$ is L^p -PP $\forall p \in (1, \infty)$ iff $K = \emptyset$.

In the threshold case:

• OK if we control also the stronger Minkowski dimension of K:

$$\operatorname{Vol}(B_{\epsilon}) \leq Cr^{\frac{2p}{p-1}}, \qquad r \in [0,1]$$

• In general dim_H $K = n - \frac{2p}{p-1}$ is not enough (counterexamples at least when $\mu_{n-\frac{2p}{p-1}}(K) = +\infty$)

イロト イヨト イヨト イヨト

Some generalizations on smooth manifolds:

1

• [A. Bisterzo, A. Farina and S. Pigola, arXiv:2304.00745]

$$\begin{cases} (-\Delta + \lambda)w \ge 0 \text{ distributionally on } M \\ \|w\|_{L^p(B_R)} = e^{\theta R} \text{ for } \theta = \theta(p, \lambda) \end{cases} \Rightarrow w \ge 0.$$

• [A. Bisterzo and G. Veronelli, work in progress] Spectral properties of $\Delta - V$ on $N \setminus K$ when $\dim_{\mathcal{H}} K > n - \frac{2p}{p-1}$ but $0 \le V \in L^1_{loc}$ is suitably controlled

(日) (四) (日) (日) (日)

Towards metric space: yet another proof...

Let $0 \ge f \in L^1_{loc}(M)$ and let $\lambda \ge 0$. Then $\Delta f - \lambda f \ge 0$ in the sense of distributions iff $\forall U \subseteq M, \forall t > 0$ one has

$$\lambda$$
-defectiveness : $e^{-t\lambda}P_t^U(f|_U) \ge f|_U$

Here $e^{-t\lambda}P_t^U$ is the Dirichlet semigroup on U associated to $(-\Delta + \lambda)$: $v(t; x) = e^{-t\lambda}P_t^U f$ solves

$$egin{cases} \partial_t v = \Delta v - \lambda v \ v(0;x) = f(x) ext{ in the } L^1 ext{ sense} \end{cases}$$

Rmk. formally $\partial_t|_{t=0}v = \Delta f - \lambda f \ge 0$

Ex. $\lambda = 0$. $f \leq 0$ is subharmonic <u>iff</u> its evolution through the heat flow (w/ null boundary condition) is non-decreasing.

Well-known for regular enough *f*, e.g. [K.T. Sturm, Crelle, 1994],[E. Ouhabaz, PotA, 1996]

We can remove the assumption $0 \ge f$ by translating...

Say that g is λ -harmonic if $\Delta g - \lambda g = 0$.

Theorem

Let $f \in L^1_{loc}$. Then $\Delta f - \lambda f \ge 0$ in the sense of distributions <u>iff</u> $\forall U \subseteq M$ there exists a λ -harmonic function g on U such that $\forall t > 0$ one has

(1)
$$e^{-t\lambda}P_t^U(f|_U-g) \ge f|_U-g$$

Def. f satisfying (1) is said locally λ -shift defective ($l.\lambda$ -s.d.).

- One can prove directly that I.λ-s.d. f satisfies a Caccioppoli inequality. In particular f^{s/2}₊ ∈ W^{1,2}_{loc}
- Once we know that f is I. λ -s.d., the monotone approximation is for free:
 - $e^{-\lambda}P_t^U$ is regularizing
 - \Rightarrow just take $e^{-t\lambda}P_t^U(f|_U g) + g$ as $t = t_k \rightarrow 0$.

!!! The monotone approximation is used in the above theorem: this is not a shortcut for the BMS conjecture in the smooth case. **However...**

イロト イヨト イヨト イヨト

The latter approach suggest to take the local λ -shift defectiveness as a definition of "distributional subsolutions" of $\Delta f - \lambda f \ge 0$ (resp. subharmonic functions) also when "distributional" a priori makes no sense.

The setting: locally smoothing, strongly local Dirichlet spaces.

• locally compact, separable, metric space X with a Radon measure having a full support and \mathcal{E} a strongly local, Markovian, regular Dirichlet form with dense domain of definition $\mathcal{F}(X) \subset L^2(X)$

think:
$$\mathcal{E}(u,v) \approx \int \langle \nabla u, \nabla v \rangle, \quad \mathcal{F}(X) \approx W^{1,2}(X)$$

locally smoothing: ∀U ∈ X it holds that P^U_t is ultracontractive and ∃U' ⊃ U open with U' \ U ≠ Ø such that P^{U'}_t is doubly Feller and irreducible.

イロト イヨト イヨト イヨト

In this setting,

Theorem

- 1. Locally λ -shift defective functions are well defined and enjoy the strong maximum principle.
- If in addition X is strictly local (i.e. d^E ≍ d) and complete, than it is L^p-PP for all p ∈ (1,∞).

Examples (beyond smooth manifolds):

- $\operatorname{RCD}(K, N)$ spaces with $\mathcal{F}(X) = \{f : \operatorname{Ch}(f) < \infty\}$ and \mathcal{E} induced by Ch .
- Carnot groups
- (only of 1.) Unbounded Sierpinski gasket

イロト イヨト イヨト

Thanks for the attention!

イロト イヨト イヨト イ

æ

Markovian property: for all contractions $T : \mathbf{R} \to \mathbf{R}$ with T(0) = 0 and all $f \in \mathcal{F}(X)$ one has $T \circ f \in \mathcal{F}(X)$ with

$$\mathcal{E}(T \circ f, T \circ f) \leq \mathcal{E}(f, f)$$

Regularity: $\mathcal{F}(X) \cap C_c(X)$ is dense in $C_c(X)$ with respect to $\|\cdot\|_{\infty}$ and in $\mathcal{F}(X)$ wrt $\mathcal{E}_1(u, v) := \mathcal{E}_1(u, v) + \langle u, v \rangle$

Strong locality: if u is constant on supp v then $\mathcal{E}(u, v) = 0$

Ultracontractivity: $P_t^U : L^1 \to L^\infty$

Double Feller property: $P_t^{U'}: C_0 \to C_0$ and $L^{\infty} \to C$ and $\lim_{t\to 0^+} P_t f = f$ pt-ws $\forall f \in C_0$.

34 / 34

イロト 不得下 イヨト イヨト 二日

RCD(K, N). For $f \in L^2(X)$, $Ch(f) := \int_X |\nabla f|^2 d\mu$ where $|\nabla f|_*$ is the minimal relaxed slope of f, i.e. the L^2 -minimal g satisfying

$$\exists \, \tilde{g} \leq g \in L^2, \, \{f_n\} \subset L^2 \text{ s.t. } f_n \xrightarrow{L^2} f, \, \operatorname{Lip}(f_n) \xrightarrow{L^2} f.$$

Given $f,g \in \mathcal{F}(X) := {Ch < \infty}$ the limit

$$(
abla f,
abla g) = \lim_{\epsilon o 0^+} rac{1}{2\epsilon} (|
abla (f+\epsilon g)|^2_* - |
abla f|^2_*)$$

exists in $L^1(X)$, and $\mathcal{E}(f,g) = \int (\nabla f, \nabla g)$. Finally one assumes that

- every $f \in \mathcal{F}(X)$ with $|\nabla f|_* \leq 1$ has a 1-Lipschitz μ -representative.
- $\int e^{-d(x_0,x)^2} < \infty$
- the (K, N)-Bochner inequality holds.

Carnot groups. *G* a simply connected Lie group with Lie algebra \mathfrak{g} , such that there exists $N \ge 1$ and a stratification

$$\mathfrak{g} = \mathfrak{V}_1 \oplus \cdots \oplus \mathfrak{V}_N$$

such that $[\mathfrak{V}_i, \mathfrak{V}_j] = \mathfrak{V}_{i+j}$, where $\mathfrak{V}_k := \{0\}$ for k > N. Let \mathfrak{m} denote the Haar measure on G, and let V_1, \ldots, V_d denote a basis of \mathfrak{V}_1 , considered as left invariant vector fields on G. Then the closure $(\mathcal{E}, \mathcal{F}(G))$ in $L^2(G, \mathfrak{m})$ of the symmetric bilinear form

$$C_c^{\infty}(G) \times C_c^{\infty}(G) \ni (f,g) \longmapsto \int_G \sum_{i,j=1}^d (V_i f)(V_j g) \mathrm{d}\mathfrak{m}$$

turns $(X, \mathfrak{m}, \mathcal{E}, \mathcal{F}(G))$ into a strongly local Dirichlet space with

$$\mathcal{E}(f,g) = \int_G \sum_{i,j=1}^d (V_i f)(V_j g) \mathrm{d}\mathfrak{m} \quad ext{for all } f,g \in \mathcal{F}(G).$$

(日)

M is p-parabolic if any of the following

- some (hence every) compact set $K \subset M$ with non empty interior has *p*-capacity 0.
- any bounded above *p*-subharmonic function *u* is constant.
- There is no positive Green function for the *p*-Laplacian Δ_p on *M*.
- Every vector field X on M such that

(a) $|X| \in L^{\frac{p}{p-1}}(M)$ (b) div $X \in L^{1}_{loc}(M)$ and min (div X, 0) =: (div X)_ $\in L^{1}(M)$ satisfies necessarily $0 \ge \int_{M} \operatorname{div} X dV_{M}$.

• (p = 2) the Brownian motion on M is recurrent.

 \boldsymbol{M} is stochastically complete if any of the following

•
$$\int_M p_t(x,y) \, dy = 1$$

- there are no non-zero bounded λ -harmonic function on M.
- (*p* = 2) the Brownian motion has infinite lifetime: the total probability of the particle being found in the state space is constantly equal to 1.